화학공학소재연구정보센터
Chinese Journal of Chemical Engineering, Vol.14, No.1, 65-72, 2006
Accelerated recursive feature elimination based on support vector machine for key variable identification
Key variable identification for classifications is related to many trouble-shooting problems in process industries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in application for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diagnosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee Eastman process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application.