Inorganic Chemistry, Vol.45, No.6, 2531-2542, 2006
Orbital interactions in Fe(II)/Co(III) heterobimetallocenes: Single versus double bridge
Ferrocenyl cobaltocenium hexafluorophosphate (1) and ferrocenylene cobaltocenylenium hexafluorophosphate (2) are investigated by a range of spectroscopic methods. Both compounds are diamagnetic, in contrast to an earlier report indicating a temperature-dependent paramagnetism of 2. Electronic absorption spectra of 1 and 2 are presented and fully assigned up to 50 000 cm(-1) on the basis of electronic structure (DFT) calculations and spectral comparisons with ferrocene and cobaltocenium. The lowest-energy bands, 1, of both 1 and 2 correspond to metal-to-metal CT (MMCT) transitions; further intermetallocene charge-transfer bands are identified at higher energy (bands III and V). On the basis of the spectroscopic properties, a trans geometry and a twisted structure are derived for 1 and 2, respectively, in solution. Analysis of the I bands gives orbital mixing coefficients, cc, electronic-coupling matrix elements, V-AB, and reorganization energies, A. Importantly, alpha and V-AB are larger for 1 than for 2 (0.07 and 1200 cm(-1) vs 0.04 and similar to 600 cm(-1), respectively), apparently in contrast to the presence of one bridge in 1 and two bridges in 2. This result is explained in terms of the respective electronic and geometric structures. Reorganization energies are determined to be 7600 cm(-1) for 1 and 4600 cm(-1) for 2, in qualitative agreement with the analogous Fe(II)-Fe(III) compounds. The general implications of these findings with respect to the spectroscopic and electron-transfer properties of bimetallocenes are discussed.