화학공학소재연구정보센터
Journal of Membrane Science, Vol.273, No.1-2, 31-37, 2006
Topological micropatterned membranes and its effect on the morphology and growth of human mesenchymal stem cells (hMSCs)
The influence of surface micropatterning of the chitosan-collagen-gelatin (CCG) blended membranes on the activities of human mesenchymal stem cells (hMSCs) has been investigated. It is aimed to regulate the growth activity in vitro and to guide the spatial arrangement of hMSCs on the membranes for the application in tissue engineering. Masters with micropatterns were prepared on stainless steel plates or silicon wafer by photolithography. The CCG membranes with topological surface micropatterns were then fabricated by soft-lithography. The morphology and growth activity of hMSCs on the membranes were recorded. When MSCs were seeded on the membranes with micropattern spacing size of 200 mu m in width and 80 mu m in depth, they adhered and aggregated in the grooves of the membranes in a few minutes. The aggregated cells would migrate up to the surface of the ridge later, and the cells on the ridge align with the direction of the ridge-groove patterns. Some of the cells would form bridge-like structure between two adjacent ridges. When the pattern spacing size was smaller than the size of cell, the proliferation of hMSCs would be limited. Micropatterning on membrane surface could affect the distribution of hMSCs and resulted in difference of cell behaviors such as cell alignment, morphology, proliferation, and growth activity. (c) 2005 Elsevier B.V. All rights reserved.