화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.110, No.8, 2647-2654, 2006
Gas-phase oxidation of isomeric butenes and small alkanes by vanadium-oxide and -hydroxide cluster cations
Bare vanadium-oxide and -hydroxide cluster cations (VmOnHo+, m = 2-4, n = 1-10, o = 0, 1) were generated by electrospray ionization in order to examine their intrinsic reactivity toward isomeric butenes and small alkanes using mass spectrometric techniques. Two of the major reactions described here concern the activation of C-H bonds of the alkene/alkane substrates resulting in the transfer of two hydrogen atoms and/or attachment of the dehydrogenated hydrocarbon to the cluster cations; these processes are classified as oxidative dehydrogenation (ODH) and dehydrogenation, respectively. For the dehydrogenation of butene, it evolved as a general trend that high-valent clusters prefer ODH resulting in the addition of two hydrogen atoms to the cluster concomitant with elimination of neutral butadiene, whereas low-valent clusters tend to add the diene with parallel loss of molecular hydrogen. Deuterium labeling experiments suggest the operation of a different reaction mechanism for V2O2+ and V4O10+ compared to the other cluster cations investigated, and these two cluster cations also are the only ones of the vanadium-oxide ions examined here that are able to dehydrogenate small alkanes. The kinetic isotope effects observed experimentally imply an electron transfer mechanism for the ion-molecule reactions of the alkanes with V4O10+.