Journal of Physical Chemistry B, Vol.110, No.10, 4524-4526, 2006
Highly acidic mesostructured aluminosilicates assembled from surfactant-mediated zeolite hydrolysis products
The surfactant-mediated hydrolysis of ZSM-5 zeolite affords five-membered ring subunits that can be readily incorporated into the framework walls of a hexagonal mesostructured aluminosilicate, denoted MSU-Z. The five-membered ring subunits, which are identifiable by infrared spectroscopy, impart unprecedented acidity to the mesostructure, as judged by cumene cracking activity at 300 degrees C. Most notably, MSU-Z aluminosilicate made through the base hydrolysis of ZSM-5 in the presence of cetyltrimethylammonium ions exhibits a cumene conversion of 73%, which is 6.7-fold higher than the conversion provided by a conventional MCM-41. This approach to stabilizing zeolitic subunits through surfactant-mediated hydrolysis of zeolites appears to be general. The hydrolysis of USY zeolite under analogous hydrolytic conditions also affords zeolitic fragments that boost the acidity of the mesostructure in comparison to equivalent compositions prepared from conventional aluminosilicate precursors.