화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.10, 4751-4755, 2006
STM observation of a ruthenium dye adsorbed on a TiO2(110) surface
Individual Ru(4,4'-dicarboxy-2,2'-bipyridine)(2)(NCS)(2) molecules, commonly known as N3, adsorbed on a TiO2 surface were visualized with a scanning tunneling microscope (STM) operated in ultrahigh vacuum. A TiO2(110)-(1 x 1) crystal was taken out from the vacuum vessel and immersed into an acetonitrile solution of N3. A monolayer of pivalate ((CH3)(3)CCOO-) ions was used to protect the (1 x 1) surface from contamination during the wetting process of the N3 adsorption. The N3 molecules adsorbed on the flat terraces protruded by 0.65 nm from the pivalate monolayer. The image height difference of the admolecules could be understood with the assumption that the N3 molecules anchor to the TiO2 surface via two carboxyl groups. The number density of the N3 molecules on the steps was higher than that on the terraces. The poorly coordinated Ti atoms exposed at the step edges form preferential sites where the carboxyl groups can approach, due to a lower steric obstacle or because the structure of the adsorbed N3 molecules suffers less distortion.