화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.12, 6027-6039, 2006
Dehydroindigo: A new piece into the Maya Blue puzzle from the voltammetry of microparticles approach
Combining a novel technique, the voltammetry of microparticles, with spectrometric, nuclear magnetic resonance, electron microscopy, and atomic force microscopy data, Maya Blue is detected in wall paintings of the Substructures A-3, A-5, and A-6, dated in the Early Classical period (440-450 a.c.), and the Substructure U-C, dated in the Late Preclassical period (150 b.C.), in the archaeological site of Calakmul (Campeche, Mexico), thus providing evidence on the use of the pigment 750 years prior to the date currently accepted. Electrochemical measurements, supported by spectrometric data, indicate that the presence of palygorskite-attached dehydroindigo, the oxidized form of indigo, contributes to the greenish color of Maya Blue. Enthalpy and entropy of attachment of such compounds to palygorskite are calculated from the temperature dependence of electrochemical data. Both attachment processes are endothermic, becoming thermodynamically spontaneous at moderate temperatures. Accordingly, ancient Mayas may modulate the hue of Maya Blue from turquoise to greenish blue by controlling the temperature during the crushing process.