- Previous Article
- Next Article
- Table of Contents
Journal of the Electrochemical Society, Vol.153, No.4, A724-A730, 2006
A novel approach for measuring catalytic activity of planar model catalysts in the polymer electrolyte fuel cell environment
The electrochemical oxygen reduction reaction on nanostructured supported platinum electrodes is measured using a newly developed solid-state polymer electrolyte electrochemical cell. Measurements were made on three types of catalytic surfaces on glassy carbon supports: nanostructured model electrodes prepared by colloidal lithography, a thin thermally evaporated Pt film, and a pure glassy carbon surface. Measurements in nitrogen and oxygen at several different humidities were performed at 60 degrees C in a fuel-cell-like environment. Lowering humidity showed a higher Tafel slope at high potentials for oxygen reduction on the nanostructured catalyst. Good agreement between the electrochemical active area from the hydrogen adsorption peaks and the catalytic area determined from scanning electron microscopy images was found. No significant change of the electrochemically active area with humidity could be found. Double-layer capacitance and oxygen reduction currents increased with increased humidification temperatures.