Macromolecules, Vol.39, No.6, 2238-2246, 2006
Dendron decorated platinum(II) acetylides for optical power limiting
The effect of dendritic substituents on a nonlinear optical chromophore for optical power limiting (OPL) has been investigated. Synthesis and characterization of bis((4-(phenylethynyl)phenyl)ethynyl)bis(tributylphosphine)platinum(II) with dendritic end groups are described. Polyester dendrimers up to the fourth generation were grown divergently using the anhydride of 2,2-bis(methylol)propionic acid (bis-MPA). The introduction of the dendritic moieties onto the NLO chromophore enables further processing of the materials using polymeric and related techniques. OPL measurements performed at 532, 580, and 630 nm show that the OPL properties improve with increasing size of the dendritic substituent. It is also shown that the addition of the dendrons increase the OPL as compared to the nondecorated bis((4-(phenylethynyl)phenyl)ethynyl)bis(tributylphosphine)platinum(II). By use of femtosecond z-scan measurements carried out at different pulse-repetition frequencies, it is shown that the two-photon absorption cross section is similar to 10 GM. Using pulse repetition frequencies (100 kHz-4.75 MHz) so that the time between the pulses is comparable with the triplet excited lifetime, the z-scans become dominated by excited-state absorption of excited triplet states.