화학공학소재연구정보센터
Polymer, Vol.47, No.7, 2460-2469, 2006
Ultrasonic oscillations induced morphology and property development of polypropylene/montmorillonite nanocomposites
Polypropylene/montmorillonite nanocomposites (PPCNs) with 3% organophilic montmorillonite (OMMT) content were prepared via ultrasonic extrusion. The objective of present study was to investigate the effects of ultrasonic oscillations in processing on the morphology and property development of PPCNs. XRD and TEM results confirmed the intercalated structure of OMMT in conventional nanocomposite (without ultrasonic treatment) and ultrasonicated nanocomposite, but ultrasonic oscillations could make silicate layers finely dispersed and a little exfoliated. According to SEM, the OMMT particles were evenly and finely dispersed in the ultrasonicated nanocomposite via ultrasonic oscillations, and the aggregation size of clay particles was about 100 nm, which is less than that in conventional nanocomposite. The crystalline dimension, crystalline morphology and the growth rate of crystallization in PPCNs were investigated by DSC and PLM, it was found that the OMMT particles and ultrasonic oscillations played an important role in the nucleation rate, crystallization temperature and spherulite size of PP matrix in nanocomposites. Compared with conventional nanocomposite, the mechanical properties of the ultrasonicated nanocomposite increased due to the improved dispersion of OMMT and diminished spherulite size. The thermal stability and the rheological behavior of PP and its nanocomposites were both studied by thermogravimetry and high pressure rheometer, respectively. (c) 2006 Elsevier Ltd. All rights reserved.