Langmuir, Vol.22, No.7, 2986-2992, 2006
Rheological behavior of aqueous micellar solutions of a triblock copolymer of ethylene oxide and 1,2-butylene oxide: B10E410B10
A triblock copolymer of ethylene oxide and 1,2-butylene oxide, denoted B10E410B10, was prepared by sequential oxyanionic polymerization and characterized by C-13 NMR spectroscopy and gel permeation chromatography. Micellization and the formation of micelle clusters in dilute aqueous solution, the latter a consequence of micelle bridging, was confirmed by dynamic light scattering, and average association numbers of the micelles were determined by static light scattering for T = 20-40 degrees C. The frequency dependence of the dynamic storage and loss moduli was investigated for solutions in the range of 5-20 wt %. Comparison with results for poly(oxyethylene) dialkyl ethers (10 wt %, T = 25 degrees C) indicated that the viscoelasticity of a copolymer with terminal B-10 hydrophobic blocks was roughly equivalent to one with terminal C-14 alkyl chains. The temperature dependence of the modulus was investigated for 15 wt % solutions at T = 5-40 degrees C. Superposition of the data led, via an Arrhenius plot, to an activation energy for the relaxation process of -40 kJ mol(-1). The negative value contrasts with the positive values found for poly(oxyethylene) dialkyl ethers and related HEUR copolymers with urethane-linked terminal alkyl chains. This difference is attributed to the block-length distribution in copolymer B10E410B10, whereby the activation energy of the relaxation process has a positive contribution from the disengagement of B blocks from micelles but a negative contribution from micellization. The negative value of the activation energy for solutions of B10E410B10 was confirmed by determining the temperature dependence of the zero-shear viscosity of its 15 wt % solution.