화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.18, No.2, 41-49, June, 2006
Simulations of pendant drop formation of a viscoelastic liquid
E-mail:
A modified Volume-of-Fluid (VOF) numerical method is used to predict the dynamics of a liquid drop of a low viscosity dilute polymer solution, forming in air from a circular nozzle. Viscoelastic effects are represented using an Oldroyd-B model. Predicted drop shapes are compared with experimental observations. The main features, including the timing of the shape evolution and the “bead-on-a-string” effect, are well reproduced by the simulations. The results confirm published conclusions of the third author, that the deformation is effectively Newtonian until near the time of Newtonian pinch-off and that the elastic stress becomes large in the pinch region due to the higher extensional flow there.
  1. Amarouchene Y, Bonn D, Meunier J, Kellay H, Phys. Rev. Lett., 86(16), 3558 (2001) 
  2. Christanti Y, Walker LM, J. Non-Newton. Fluid Mech., 100(1-3), 9 (2001) 
  3. Cooper-White JJ, Fagan JE, Tirtaatmadja V, Lester DR, Boger DV, J. Non-Newton. Fluid Mech., 106(1), 29 (2002) 
  4. Davidson MR, Cooper-White JJ, Tirtaatmadja V, Shear-thinning drop formation, ANZIAM J. 45E, part C, C405-C418 (2004)
  5. Davidson MR, Cooper-White JJ, Appl. Math. Model., In press (2006)
  6. Eggers J, Rev. Mod. Phys., 69(3), 865 (1997) 
  7. Hirsch C, Numerical Computation of Internal and External Flows, Vol. 1: Fundamentals of Numerical Discretization. Wiley (2000)
  8. Keunings R, J. Comput. Phys., 62, 199 (1986) 
  9. Li J, Fontelos A, Phys. Fluids, 15(4), 922 (2003) 
  10. Pillapakkam SB, Singh P, J. Comput. Phys., 174, 552 (2001) 
  11. Ramaswamy S, Leal LG, J. Non-Newton. Fluid Mech., 85(2-3), 127 (1999) 
  12. Ramaswamy S, Leal LG, J. Non-Newton. Fluid Mech., 88(1-2), 149 (1999) 
  13. Rayleigh, Lord JWS, Philos. Mag., 48, 321 (1899)
  14. Rudman M, Int. J. Numer. Methods Fluids, 28, 357 (1998) 
  15. Scardovelli R, Zaleski S, Annu. Rev. Fluid Mech., 31, 567 (1999) 
  16. Singh P, Leal LG, Theoret. Comput. Fluid Dynamics, 5, 107 (1993) 
  17. Smolka LB, Belmonte A, J. Non-Newton. Fluid Mech., 115(1), 1 (2003) 
  18. Sostarecz MC, Belmonte A, Phys. Fluids, 16, L67 (2004) 
  19. Tanner RI, Xue SC, Korea-Aust. Rheol. J., 14(4), 143 (2002)
  20. Tanner RI, Engineering Rheology, 2nd edition, Oxford University Press (2002)
  21. Tirtaatmadja V, McKinley GH, Cooper-White JJ, Phys. Fluids, 18(4), 043101 (2006) 
  22. Tome MF, Mangiavacchi N, Cuminato JA, Castelo A, McKee S, J. Non-Newton. Fluid Mech., 106(2-3), 61 (2002) 
  23. Wilkes ED, Phillips SD, Basaran OA, Phys. Fluids, 11(12), 3577 (1999) 
  24. Xue SC, Tanner RI, Phan-Thien N, J. Non-Newton. Fluid Mech., 123(1), 33 (2004) 
  25. Yildirim OE, Basaran OA, Chem. Eng. Sci., 56(1), 211 (2001)