- Previous Article
- Next Article
- Table of Contents
Korea-Australia Rheology Journal, Vol.18, No.2, 41-49, June, 2006
Simulations of pendant drop formation of a viscoelastic liquid
E-mail:
A modified Volume-of-Fluid (VOF) numerical method is used to predict the dynamics of a liquid drop of a low viscosity dilute polymer solution, forming in air from a circular nozzle. Viscoelastic effects are represented using an Oldroyd-B model. Predicted drop shapes are compared with experimental observations. The main features, including the timing of the shape evolution and the “bead-on-a-string” effect, are well reproduced by the simulations. The results confirm published conclusions of the third author, that the deformation is effectively Newtonian until near the time of Newtonian pinch-off and that the elastic stress becomes large in the pinch region due to the higher extensional flow there.
- Amarouchene Y, Bonn D, Meunier J, Kellay H, Phys. Rev. Lett., 86(16), 3558 (2001)
-
Christanti Y, Walker LM, J. Non-Newton. Fluid Mech., 100(1-3), 9 (2001)
-
Cooper-White JJ, Fagan JE, Tirtaatmadja V, Lester DR, Boger DV, J. Non-Newton. Fluid Mech., 106(1), 29 (2002)
- Davidson MR, Cooper-White JJ, Tirtaatmadja V, Shear-thinning drop formation, ANZIAM J. 45E, part C, C405-C418 (2004)
- Davidson MR, Cooper-White JJ, Appl. Math. Model., In press (2006)
- Eggers J, Rev. Mod. Phys., 69(3), 865 (1997)
- Hirsch C, Numerical Computation of Internal and External Flows, Vol. 1: Fundamentals of Numerical Discretization. Wiley (2000)
- Keunings R, J. Comput. Phys., 62, 199 (1986)
- Li J, Fontelos A, Phys. Fluids, 15(4), 922 (2003)
- Pillapakkam SB, Singh P, J. Comput. Phys., 174, 552 (2001)
-
Ramaswamy S, Leal LG, J. Non-Newton. Fluid Mech., 85(2-3), 127 (1999)
-
Ramaswamy S, Leal LG, J. Non-Newton. Fluid Mech., 88(1-2), 149 (1999)
- Rayleigh, Lord JWS, Philos. Mag., 48, 321 (1899)
- Rudman M, Int. J. Numer. Methods Fluids, 28, 357 (1998)
- Scardovelli R, Zaleski S, Annu. Rev. Fluid Mech., 31, 567 (1999)
- Singh P, Leal LG, Theoret. Comput. Fluid Dynamics, 5, 107 (1993)
-
Smolka LB, Belmonte A, J. Non-Newton. Fluid Mech., 115(1), 1 (2003)
- Sostarecz MC, Belmonte A, Phys. Fluids, 16, L67 (2004)
- Tanner RI, Xue SC, Korea-Aust. Rheol. J., 14(4), 143 (2002)
- Tanner RI, Engineering Rheology, 2nd edition, Oxford University Press (2002)
- Tirtaatmadja V, McKinley GH, Cooper-White JJ, Phys. Fluids, 18(4), 043101 (2006)
-
Tome MF, Mangiavacchi N, Cuminato JA, Castelo A, McKee S, J. Non-Newton. Fluid Mech., 106(2-3), 61 (2002)
- Wilkes ED, Phillips SD, Basaran OA, Phys. Fluids, 11(12), 3577 (1999)
-
Xue SC, Tanner RI, Phan-Thien N, J. Non-Newton. Fluid Mech., 123(1), 33 (2004)
-
Yildirim OE, Basaran OA, Chem. Eng. Sci., 56(1), 211 (2001)