Korea-Australia Rheology Journal, Vol.18, No.2, 91-98, June, 2006
Comparison of interpretation methods for large amplitude oscillatory shear response
E-mail:
We compare FT (Fourier Transform) and SD (Stress Decomposition), the interpretation methods for LAOS (Large Amplitude Oscillatory Shear). Although the two methods are equivalent in mathematics, they are significantly different in numerical procedures. Precision of FT greatly depends on sampling rate and length of data because FT of experimental data is the discrete version of Fourier integral theorem. FT inevitably involves unnecessary frequencies which must not appear in LAOS. On the other hand, SD is free from the problems from which FT suffers, because SD involves only odd harmonics of primary frequency. SD is based on two axioms on shear stress: [1] shear stress is a sufficiently smooth function of strain and its time derivatives; [2] shear stress satisfies macroscopic time-reversal symmetry. In this paper, we compared numerical aspects of the two interpretation methods for LAOS.
- Cho KS, Ahn KH, Lee SJ, J. Rheol., 49(3), 747 (2005)
- van Dusschoten D, Wilhelm M, Rheol. Acta, 40(4), 395 (2001)
- Giacomine AJ, Dealy JM, Large-amplitude oscillatory shear,” in Techniques in Rheological Measurements edited A. A. Collyer (Chapman & Hall, London) Chapter 4 (1993)
- Graham MD, J. Rheol., 39(4), 697 (1995)
- Krieger IM, Niu TF, Rheol. Acta, 12, 567 (1973)
- Kallus S, Willenbacher N, Kirsch S, Distler D, Neidhofer T, Wilhelm M, Spiess HW, Rheol. Acta, 40(6), 552 (2001)
- Mas R, Magnin A, Rheol. Acta, 36(1), 49 (1997)
- Onogi S, Masuda T, Matsumoto T, Trans. Soc. Rheol., 14, 275 (1970)
- Philippoff W, Trans. Soc. Rheol., 10, 317 (1966)
- Reimers MJ, Dealy JM, J. Rheol., 40(1), 167 (1996)
- Wilhelm M, Maring D, Spiess HW, Rheol. Acta, 37(4), 399 (1998)
- Wilhelm M, Reinheimer P, Ortseifer M, Rheol. Acta, 38(4), 349 (1999)
- Wilhelm M, Reinheimer P, Ortseifer M, Neidhofer T, Spiess HW, Rheol. Acta, 39(3), 241 (2000)