Journal of Chemical Physics, Vol.118, No.24, 11066-11072, 2003
Optical spectroscopy of simple aqueous solutions under extreme conditions
We report the results of an extensive series of Brillouin scattering experiments on simple aqueous solutions with a view to exploring their dynamical properties over a wide range of temperatures and pressures. For all solutes studied that inhibit freezing and allow access to temperatures far below the normal supercooling limit of water, we find clear spectroscopic evidence of GHz-range viscoelastic behavior below approximate to-40 degreesC. This is manifested by a dramatic rise in the Brillouin mode frequencies accompanied by initial broadening and subsequent narrowing of the spectral linewidths on cooling. We find similar behavior in pure compressed (to between 2 and 4 kbar) supercooled water. This suggests that the low-temperature viscoelastic dynamics of these solutions is dominated by the behavior of the aqueous component which evidently exhibits a pronounced decrease in relaxation time though the temperature range over which it occurs is inaccessible unless freezing is suppressed either by pressure or the presence of solutes. No firm conclusion can be drawn concerning the proposed second critical point at these very low temperatures though it is not required for a consistent interpretation of the data. In the high-temperature regime, where the hydrogen bond structure is disrupted, we find considerable chemical sensitivity (even among the three chloride salts NaCl, CsCl, and CaCl2) in the dynamics especially in the vicinity of the liquid-gas critical point. This is in contrast to the low-temperature case where the cooperative dynamics of the water network dominates and appears to remain intact in the presence of a wide variety of solutes. (C) 2003 American Institute of Physics.