화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.17, No.4, 369-374, August, 2006
Dihydrocinchonidine으로 개질된 Rh-Pt/Al2O3 이원금속 촉매를 이용한 Ethyl Pyruvate의 비대칭 수소화
Asymmetric Hydrogenation of Ethyl Pyruvate over Bimetallic Rh-Pt/Al2O3 Catalysts Modified with Dihydrocinchonidine
E-mail:
초록
Ethyl pyruvate의 비대칭 수소화 반응에 Rh-Pt/Al2O3 이원금속 촉매를 처음으로 적용하고 그 반응특성을 조사하였다. Rh-Pt/Al2O3 촉매는 상용 Pt/Al2O3에 Rh을 담지하거나 Al2O3에 Pt와 Rh을 연속적으로 함침시켜 제조하여, 촉매제법, Rh 함량 및 환원온도에 따라 반응속도, 광학선택도(ee%)가 변화하는 경향을 비교하였으며, XRD, TEM을 통하여 촉매의 물리적 특성을 분석하였다. Rh-Pt/Al2O3 이원금속 촉매는 환원온도가 증가함에 따라 반응속도와 광학순도가 향상되었다(63.6 ee%). 또한 Rh의 함량에 따라서도 촉매 반응속도의 큰 변화를 보여주었는데, 그 변화 경향은 촉매 제조과정에 따라 달랐으나 광학선택도는 모든 이원촉매가 단일촉매에 비해 떨어지는 결과(56~60 ee%)를 나타내었다.
Rh-Pt/Al2O3 catalysts were used for the first time to study its reaction characteristics in the asymmetric hydrogenation of ethyl pyruvate. The catalysts were prepared either by impregnation of Rh on a commercial Pt/Al2O3 or by sequential impregnation of Rh followed by impregnation of Pt on Al2O3. Reaction rate and enantiomeric excess (ee%) were compared according to the preparation method, Rh contents, and the reduction temperature of the catalyst. The physical characteristics of the catalysts were analyzed using XRD and TEM. Bimetallic Rh-Pt/Al2O3 catalysts showed an improved reaction rate and optical purity (63.6 ee%) with increasing the reduction temperature. The variation of the Rh contents as well as the preparation method elicited a big difference on the reaction rate, while enantiomeric excess (ee%) was lower (56∼60%) with all bimetallic catalysts than with monometallic Pt/Al2O3 catalyst.
  1. Clary JJ, Feron VJ, van Velthuijsen JA, Regul. Toxicol. Pharmacol., 27, 88 (1998) 
  2. Hoke JB, Hollis LS, Stern EW, J. Organomet. Chem., 455, 193 (1993) 
  3. Toth I, Hanson BE, J. Mol. Catal., 71, 365 (1992) 
  4. Carpentier JF, Agbossou F, Mortreux A, Tetrahedron: Asymmetry, 6, 39 (1995) 
  5. Gross LH, Rys P, J. Org. Chem., 39, 2429 (1974) 
  6. Tai A, Tsukioka K, Ozaki H, Harada T, Izumi Y, Chem. Lett., 2083 (1984) 
  7. Osawa T, Harada T, Bull. Chem. Soc. Jpn., 60, 1277 (1987) 
  8. Orito Y, Imai S, Niwa S, Nguyen GH, J. Synth. Org. Chem. Jpn., 37, 173 (1979)
  9. Orito Y, Imai S, Niwa S, J. Chem. Soc. Jpn., 670 (1980)
  10. Blaser HU, Jalett HP, Monti DM, Reber JF, Wehrli JT, Hetero. Cat. Fine Chem., 153 (1988)
  11. Wehrli JT, Baiker A, Monti DM, Blaser HU, J. Mol. Catal., 61, 207 (1990) 
  12. Blaser HU, Jalett HP, Monti DM, Appl. Catal., 52, 19 (1989) 
  13. Blaser HU, Jalett HP, Monti DM, Catal. Lett., 10, 325 (1991) 
  14. Ma H, Chen H, Zhang Q, Li X, J. Mol. Catal., 196, 131 (2002) 
  15. Mallat T, Szabo S, Schurch M, Gobel UW, Baiker A, Catal. Lett., 47(3-4), 221 (1997)
  16. Sutherland IM, Ph. D. Dissertation, Univ. of Hull, Hull, United Kingdom (1989)
  17. Dahlgren D, Hemminger JC, Surf. Sci., 109, L513 (1981) 
  18. Dahlgren D, Hemminger JC, Surf. Sci., 114, 459 (1982) 
  19. Gland JL, Somorjai GA, Surf. Sci., 38, 157 (1973) 
  20. Barbier J, Handbook of Heterogeneous Catalysts, 257, WILEYVCH, Poitiers, France (1997)
  21. Yie JE, J. Korean Ind. Eng. Chem., 3(1), 24 (1992)
  22. Kim YK, Shin KW, Yie JE, J. Korean Ind. Eng. Chem., 7(4), 661 (1996)
  23. Lakis RE, Lyman CE, Stenger HG, J. Catal., 154, 261 (1996)
  24. Singh UK, Landau RN, Sun YK, Leblond C, Blackmond DG, Tanielyan SK, Augustine RL, J. Catal., 154(1), 91 (1995) 
  25. Webb G, Wells PB, Catal. Today, 12, 319 (1992) 
  26. Gland JL, Somorjai GA, Surf. Sci., 38, 157 (1973)