Journal of the Korean Industrial and Engineering Chemistry, Vol.17, No.4, 369-374, August, 2006
Dihydrocinchonidine으로 개질된 Rh-Pt/Al2O3 이원금속 촉매를 이용한 Ethyl Pyruvate의 비대칭 수소화
Asymmetric Hydrogenation of Ethyl Pyruvate over Bimetallic Rh-Pt/Al2O3 Catalysts Modified with Dihydrocinchonidine
E-mail:
초록
Ethyl pyruvate의 비대칭 수소화 반응에 Rh-Pt/Al2O3 이원금속 촉매를 처음으로 적용하고 그 반응특성을 조사하였다. Rh-Pt/Al2O3 촉매는 상용 Pt/Al2O3에 Rh을 담지하거나 Al2O3에 Pt와 Rh을 연속적으로 함침시켜 제조하여, 촉매제법, Rh 함량 및 환원온도에 따라 반응속도, 광학선택도(ee%)가 변화하는 경향을 비교하였으며, XRD, TEM을 통하여 촉매의 물리적 특성을 분석하였다. Rh-Pt/Al2O3 이원금속 촉매는 환원온도가 증가함에 따라 반응속도와 광학순도가 향상되었다(63.6 ee%). 또한 Rh의 함량에 따라서도 촉매 반응속도의 큰 변화를 보여주었는데, 그 변화 경향은 촉매 제조과정에 따라 달랐으나 광학선택도는 모든 이원촉매가 단일촉매에 비해 떨어지는 결과(56~60 ee%)를 나타내었다.
Rh-Pt/Al2O3 catalysts were used for the first time to study its reaction characteristics in the asymmetric hydrogenation of ethyl pyruvate. The catalysts were prepared either by impregnation of Rh on a commercial Pt/Al2O3 or by sequential impregnation of Rh followed by impregnation of Pt on Al2O3. Reaction rate and enantiomeric excess (ee%) were compared according to the preparation method, Rh contents, and the reduction temperature of the catalyst. The physical characteristics of the catalysts were analyzed using XRD and TEM. Bimetallic Rh-Pt/Al2O3 catalysts showed an improved reaction rate and optical purity (63.6 ee%) with increasing the reduction temperature. The variation of the Rh contents as well as the preparation method elicited a big difference on the reaction rate, while enantiomeric excess (ee%) was lower (56∼60%) with all bimetallic catalysts than with monometallic Pt/Al2O3 catalyst.
Keywords:Rh-Pt/Al2O3;bimetallic catalyst;asymmetric hydrogenation;ethyl pyruvate;sequential impregnation
- Clary JJ, Feron VJ, van Velthuijsen JA, Regul. Toxicol. Pharmacol., 27, 88 (1998)
- Hoke JB, Hollis LS, Stern EW, J. Organomet. Chem., 455, 193 (1993)
- Toth I, Hanson BE, J. Mol. Catal., 71, 365 (1992)
- Carpentier JF, Agbossou F, Mortreux A, Tetrahedron: Asymmetry, 6, 39 (1995)
- Gross LH, Rys P, J. Org. Chem., 39, 2429 (1974)
- Tai A, Tsukioka K, Ozaki H, Harada T, Izumi Y, Chem. Lett., 2083 (1984)
- Osawa T, Harada T, Bull. Chem. Soc. Jpn., 60, 1277 (1987)
- Orito Y, Imai S, Niwa S, Nguyen GH, J. Synth. Org. Chem. Jpn., 37, 173 (1979)
- Orito Y, Imai S, Niwa S, J. Chem. Soc. Jpn., 670 (1980)
- Blaser HU, Jalett HP, Monti DM, Reber JF, Wehrli JT, Hetero. Cat. Fine Chem., 153 (1988)
- Wehrli JT, Baiker A, Monti DM, Blaser HU, J. Mol. Catal., 61, 207 (1990)
- Blaser HU, Jalett HP, Monti DM, Appl. Catal., 52, 19 (1989)
- Blaser HU, Jalett HP, Monti DM, Catal. Lett., 10, 325 (1991)
- Ma H, Chen H, Zhang Q, Li X, J. Mol. Catal., 196, 131 (2002)
- Mallat T, Szabo S, Schurch M, Gobel UW, Baiker A, Catal. Lett., 47(3-4), 221 (1997)
- Sutherland IM, Ph. D. Dissertation, Univ. of Hull, Hull, United Kingdom (1989)
- Dahlgren D, Hemminger JC, Surf. Sci., 109, L513 (1981)
- Dahlgren D, Hemminger JC, Surf. Sci., 114, 459 (1982)
- Gland JL, Somorjai GA, Surf. Sci., 38, 157 (1973)
- Barbier J, Handbook of Heterogeneous Catalysts, 257, WILEYVCH, Poitiers, France (1997)
- Yie JE, J. Korean Ind. Eng. Chem., 3(1), 24 (1992)
- Kim YK, Shin KW, Yie JE, J. Korean Ind. Eng. Chem., 7(4), 661 (1996)
- Lakis RE, Lyman CE, Stenger HG, J. Catal., 154, 261 (1996)
- Singh UK, Landau RN, Sun YK, Leblond C, Blackmond DG, Tanielyan SK, Augustine RL, J. Catal., 154(1), 91 (1995)
- Webb G, Wells PB, Catal. Today, 12, 319 (1992)
- Gland JL, Somorjai GA, Surf. Sci., 38, 157 (1973)