화학공학소재연구정보센터
Clean Technology, Vol.12, No.2, 101-106, June, 2006
침전법으로 제조된 전구체 성질에 의한 LiCoO2의 특성에 관한 연구
Characterization of LiCoO2 Synthesized via Structural and Compositional Variations of Precursors Prepared by Precipitation
E-mail:
초록
본 연구에서는 수산화물 전구체로부터 HT-LiCoO2 분말을 제조하였다. 사용된 Co(OH)2는 α상 및, 또는 β상의 수산화물이며 여러 조건에서 침전법으로 제조되었다. 제조시에 [OH-]/[Co2+] 농도 비와 숙성시간을 조절함으로써 원하는 특성을 지닌 Co(OH)2 제조가 가능하였다. 침전법으로 합성한 Co(OH)2와 LiOH를 메탄올 수용액을 이용하여 혼합한 후 이어서 증발, 건조 그리고 숙성 조작에 의하여 HT-LiCoO2의 전구체를 합성하였다. 숙성기간에 tailor-made β-phase Co(OH)2는 CoOOH로 변환되면서 고용체를 형성한다. 이 같은 결과로 HT-LiCoO2가 낮은 온도(600℃), 짧은 시간(10분)에 합성이 가능하게 된다.
HT-LiCoO2 powders were synthesized from hydroxide precursors in this study. The cobalt hydroxide compounds with hydrotalcite-like(α-phase) and/or brucite-like(β-phase) structures as a component of the precursor were prepared in various PH conditions using precipitation method. It was found that various phase and compositions of cobalt hydroxides could be tailor-prepared via a careful control of preparation parameters such as the concentration ratio of [OH-]/[Co2+] and aging time. The hydroxides Co(OH)2 and LiOH were mixed with aqueous methyl-alcohol. The precursor of a HT-LiCoO2 was synthesized via subsequent processes including evaporation, drying and aging. The transformation of tailor-made β-phase Co(OH)2 to CoOOH and formation of solid solution in the precursor were achieved during aging. These results cause HT-LiCoO2 to be synthesized at low temperature(600℃) for a short time(10min).
  1. Nishi Y, J. Power Sources, 100(1-2), 101 (2001) 
  2. Kang SG, Kang SY, Ryu KS, Chang SH, Solid State Ion., 120(1-4), 155 (1999) 
  3. Kamath PV, Vasanthacharya NY, J. Appl. Electrochem., 22, 483 (1992) 
  4. Faure C, Delmas C, Fouassier M, J. Power Sources, 35, 279 (1991) 
  5. Bish DL, Livingstone A, J. Solid State Inorg. Chem., 31, 823 (1994)
  6. Xu ZP, Zeng HC, Int. J. Inorg. Mater, 2, 187 (2000) 
  7. Fernandez-Rodriguez JM, Morales J, Tilado JL, Reactivity of Solids, 4, 163 (1987) 
  8. Jeong WT, Lee KS, J. Alloys. Compounds, 322, 205 (2001) 
  9. Kosova NV, Anufrienko VF, Larina TV, Rougier A, Aymard L, Tarascon JM, J. Solid State Chem., 165, 56 (2002) 
  10. Kamath PV, Therese GHA, J. Solid State Chem., 128, 38 (1997) 
  11. Ramesh TN, Rajamathi M, Kamath PV, Solid State Ion., 5, 751 (2003)
  12. Rajamathi M, Kamath PV, Seshadri R, Mater. Res. Bull., 35(2), 271 (2000) 
  13. Jayashree RS, Kamath PV, J. Mater. Chem., 9, 961 (1999) 
  14. Pralong V, Delahaye-Vidal A, Beaudoin B,Gerand B, Tarascon JM, J. Mater. Chem., 9, 955 (1999) 
  15. Chiang YM, Jang YI, Wang HF, Huang BY, Sadoway DR, Ye PX, J. Electrochem. Soc., 145(3), 887 (1998) 
  16. Rao KJ, Benqlilou-Moudden H, Desbat B, J. Solid State Chem., 165, 42 (2002) 
  17. Choi YM, Pyun SI, Bae JS, Moon SI, J. Power Sources, 56, 25 (1995)