Korean Chemical Engineering Research, Vol.44, No.4, 375-381, August, 2006
Ti-구형활성탄의 유동상 광촉매 특성 평가
Characteristics of Ti-SPAC as Fluidizing Phase Photocatalyst
E-mail:
초록
티타늄 담지 구형활성탄(spherical activated carbon, SPAC)을 제조하여 유동상 광촉매 반응에 적용하고 그 특성을 평가하였다. 티타늄을 담지하기 위하여 염화티타늄용액으로 이온교환 처리된 이온교환수지를 열처리 과정을 통하여 구형활성탄으로 변환시켜 주었다. 열처리 과정 중 감량되는 성분 및 무게 변화는 TGA/MS 분석을 통하여 알아보았으며, Ti을 함유한 구형활성탄의 물리화학적 성질은 SEM, XRD, EPMA, ESR, EDS, BET와 같은 분석을 통하여 그 특성을 알아보았다. 그 결과 Ti-구형활성탄의 입자 크기는 350 μm~400 μm, 비표면적은 617 m2/g 이였으며, 담지 된 티타늄은 TiO2 anatase 형태와 rutile 형태가 주를 이루고 있음을 알 수 있었다. 구형활성탄에 담지 된 TiO2는 약 6 wt%로 균일한 분산도로 구형활성탄 표면에 담지 된 것을 EPMA 분석을 통해 알 수 있었다. 더욱이 ESR 분석을 통하여 간접적인 광촉매 활성을 확인할 수 있었으며, 따라서 이러한 결과들을 바탕으로 유동상 광반응조를 이용한 HA(humic acid) 광분해 반응에 적용하였다. 그 결과, 제거 효율이 약 70% 정도로 높게 나타났을 뿐만 아니라 반응 중에도 Ti-구형활성 탄의 강도가 계속 유지되어 유동상 반응에서의 광분해 촉매로서 활용가능성을 보여주었다.
In this sturdy, spherical activated carbon(SPAC) contained TiO2 was made by ion-exchanged treatment and heat treatment for applying fluidizing bed system. The ion-exchange resin was treated by TiCl3 aqueous solution. The treated resin and raw resin were heat-treated under nitrogen condition to convert into Ti-SPAC. During the heat-treatment, burn-off weight amounts and the element were measured by means of TGA and TGA/MS, individually. The physicochemical properties of Ti-SPAC was characterized by means of XRD, SEM, EDS, BET, EPMA, ESR, intensity and titanium content. The Ti-SPAC had spherical shape with diameter size about 350 μm~400 μm and 617 m2/g specific surface area. Structure of TiO2 in Ti-SPAC was anatase and rutile form. Also, TiO2 on SPAC were found that the TiO2 were uniformly distributed through EPMA analysis. Moreover, the Ti-SPAC showed indirect photocatalyst activity estimation through ESR analysis, characteristics of photocatalyst potentially. Over all results, Ti-SPAC was used in fluidizing bed UV/photocatalyst system to remove HA(Humic Acid). That results were HA removal efficiency was about 70% and Ti-SPAC intensity was preserved during reaction. Ti-SPAC showed practical possibility as photocatalyst in fluidizing bed system.
- Herrmann JM, Catal. Today, 24(1-2), 157 (1995)
- Mahmoodi NM, Arami M, Limaee NY, Tabrizi NS, J. Colloid Interface Sci., 295(1), 159 (2006)
- Lee S, Lee K, J. Ind. Eng. Chem., 10(3), 492 (2004)
- Turchi CS, Ollis DF, J. Phys. Chem., 92(23), 6852 (1988)
- Louise EB, Mary D, Water Res., 27(7), 1209 (1993)
- McCarthy JF, “Bioavailability and Toxicity of Metals and Hydrophobic Organic Contaminants. In Aquatic Humic Substances: Influence on Fate and Treatment of Pollutants,” American Chemical Society, Washington. DC 263-279 (1989)
- Singer PC, Water Sci. Technol., 40(9), 25 (1999)
- Ministry of Environmental(Korea), data base of water quality
- Wang GS, Liao CH, Wu FJ, Chemosphere, 42, 379 (2001)
- Wu C, Yue Y, Deong X, Hua W, Gao Z, Catal. Today, 93, 863 (2004)
- Kim TK, Lee MN, Lee SH, Park YC, Jung CK, Boo JH, Thin Solid Films, 475(1-2), 171 (2005)
- Yoneyama H, Torimoto T, Catal. Today, 58(2-3), 133 (2000)
- Torimoto T, Ito S, Kuwabata S, Yoneyama H, Environ. Sci. Technol., 30, 1275 (1996)
- Banwell CN, McCash EM, Fundamentals of molecular spectroscopy. McGRAW-HILL BOOK COMPANY., 254-257 (1994)