- Previous Article
- Next Article
- Table of Contents
Korean Chemical Engineering Research, Vol.44, No.4, 417-423, August, 2006
아민고정화 MCM-41 염기촉매를 이용한 Knoevenagel 축합반응
Knoevenagel Condensation Reaction Using Amine-functionalized MCM-41 Base Catalysts
E-mail:
초록
실리카계 메조 물질 MCM-41 지지체 위에 여러 방법으로 aminopropyltrimethoxysilane(APMS)을 표면 기능화 시킨 염기촉매를 제조하였고 표준 염기반응인 Knoevenagel 축합반응을 수행하여 촉매적 활성을 측정하였다. Methyltrimethoxysilane으로 추가 표면처리하거나, APMS를 염소함유 유기실란과 축합하여 2차 아민 형성 후 고정화시킨 MCM-41 촉매(BAPM)를 제조한 결과, MCM-41 표면의 잔류 OH를 제거하고 물과의 수소결합으로 아민 활성점의 기능이 약화되는 것을 억제하여 높은 TON을 얻을 수 있었다. 코팅에 의해 표면에 많은 양의 아민이 고정화된 MCM-41은, 세공 내부의 반응 공간이 줄어들고, 인접한 아민 간의 수소결합으로 인하여 낮은 염기도가 예상되며 촉매 활성도 상대적으로 낮았다. 제조한 촉매 중에는 BAPM이 촉매 활성이 가장 우수하였다.
A series of amine functionalized MCM-41 catalysts were prepared by aminopropyltrimethoxysilane grafting and their catalytic performance in Knoevenagel reaction of selected substrates was investigated. Water resistant and catalytically active amine grafted MCM-41 was prepared by post-synthetic silylation using methyltrimethoxysilane ; hydrogen bonding of the water molecules formed during the condensation reaction to the active N group was suppressed, which led to high TON of the reaction. Amine functionalized MCM-41 prepared by coating method produced high conversion, but the TON of the catalyst was much lower than that of the amine grafted MCM-41; pore volume of the functionalized MCM-41 decreased substantially and large portion of the immobilized amine is believed to be hydrogen bonded to each other, which can result in decrease in the basicity of the N group. A secondary amine group was prepared by room temperature condensation between aminopropylsilane and chloropropylsilane, and the MCM-41 grafted with the secondary amine group demonstrated the highest catalytic activity among the catalysts prepared.
Keywords:Mesoporous Silica;Aminopropyltrimethoxysilane;Silylation Solid Base Catalyst;Knoevenagel Condensation
- Hattori H, Chem. Rev., 95(3), 537 (1995)
- Ono Y, Baba T, Catal. Today, 38(3), 321 (1997)
- Tanabe K, Holderich WF, Appl. Catal. A: Gen., 181(2), 399 (1999)
- Pines H, Eschinazi HE, J. Am. Chem. Soc., 77, 6314 (1955)
- Mortier WJ, J. Catal., 55(2), 138 (1978)
- Tanaka K, Yanashima H, Minobe M, Suzukamo G, Appl. Surf. Sci., 121, 461 (1997)
- Lin X, Chuah GK, Jaenicke S, J. Mol. Catal. A-Chem., 150, 287 (1999)
- Macquarrie DJ, Clark JH, Lambert A, Mdoe JEG, Priest A, React. Funct. Polym., 35(3), 153 (1997)
- Climent MJ, Corma A, Iborra S, Velty A, J. Mol. Catal. A-Chem., 182, 327 (2002)
- Kim KS, Song JH, Kim JH, Seo G, Stud. Surf. Sci. Catal., 146, 505 (2003)
- Barcelo G, Grenouillat D, Senet JP, Sennyey G, Tetrahedron, 46, 1839 (1990)
- Cauvel A, Renard G, Brunel D, J. Org. Chem., 62, 749 (1997)
- Choudary BM, Kantam ML, Sreekanth P, Bandopadhyay T, Figueras F, Tuel A, J. Mol. Catal. A-Chem., 142(3), 361 (1999)
- Rodriguez I, Iborra S, Rey F, Corma A, Appl. Catal. A: Gen., 194, 241 (2000)
- Lindlar B, Luchinger M, Rothlisberger A, Haouas M, Pirngruber G, Kogelbauer A, Prins R, J. Mater. Chem., 12(3), 528 (2002)
- Feng X, Fryxell GE, Wang LQ, Kim AY, Liu J, Kemner KM, Science, 276(5314), 923 (1997)
- Yang C, Jia XP, Cao YD, He NY, Stud. Surf. Sci. Catal., 146, 485 (2003)
- Luechinger M, Prins R, Pirngruber GD, Microporous Mesoporous Mater., 85, 111 (2005)
- Jaenicke S, Chuah GK, Lin XH, Hu XC, Microporous Mesoporous Mater., 35, 143 (2000)