화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.44, No.4, 417-423, August, 2006
아민고정화 MCM-41 염기촉매를 이용한 Knoevenagel 축합반응
Knoevenagel Condensation Reaction Using Amine-functionalized MCM-41 Base Catalysts
E-mail:
초록
실리카계 메조 물질 MCM-41 지지체 위에 여러 방법으로 aminopropyltrimethoxysilane(APMS)을 표면 기능화 시킨 염기촉매를 제조하였고 표준 염기반응인 Knoevenagel 축합반응을 수행하여 촉매적 활성을 측정하였다. Methyltrimethoxysilane으로 추가 표면처리하거나, APMS를 염소함유 유기실란과 축합하여 2차 아민 형성 후 고정화시킨 MCM-41 촉매(BAPM)를 제조한 결과, MCM-41 표면의 잔류 OH를 제거하고 물과의 수소결합으로 아민 활성점의 기능이 약화되는 것을 억제하여 높은 TON을 얻을 수 있었다. 코팅에 의해 표면에 많은 양의 아민이 고정화된 MCM-41은, 세공 내부의 반응 공간이 줄어들고, 인접한 아민 간의 수소결합으로 인하여 낮은 염기도가 예상되며 촉매 활성도 상대적으로 낮았다. 제조한 촉매 중에는 BAPM이 촉매 활성이 가장 우수하였다.
A series of amine functionalized MCM-41 catalysts were prepared by aminopropyltrimethoxysilane grafting and their catalytic performance in Knoevenagel reaction of selected substrates was investigated. Water resistant and catalytically active amine grafted MCM-41 was prepared by post-synthetic silylation using methyltrimethoxysilane ; hydrogen bonding of the water molecules formed during the condensation reaction to the active N group was suppressed, which led to high TON of the reaction. Amine functionalized MCM-41 prepared by coating method produced high conversion, but the TON of the catalyst was much lower than that of the amine grafted MCM-41; pore volume of the functionalized MCM-41 decreased substantially and large portion of the immobilized amine is believed to be hydrogen bonded to each other, which can result in decrease in the basicity of the N group. A secondary amine group was prepared by room temperature condensation between aminopropylsilane and chloropropylsilane, and the MCM-41 grafted with the secondary amine group demonstrated the highest catalytic activity among the catalysts prepared.
  1. Hattori H, Chem. Rev., 95(3), 537 (1995) 
  2. Ono Y, Baba T, Catal. Today, 38(3), 321 (1997) 
  3. Tanabe K, Holderich WF, Appl. Catal. A: Gen., 181(2), 399 (1999) 
  4. Pines H, Eschinazi HE, J. Am. Chem. Soc., 77, 6314 (1955) 
  5. Mortier WJ, J. Catal., 55(2), 138 (1978) 
  6. Tanaka K, Yanashima H, Minobe M, Suzukamo G, Appl. Surf. Sci., 121, 461 (1997) 
  7. Lin X, Chuah GK, Jaenicke S, J. Mol. Catal. A-Chem., 150, 287 (1999) 
  8. Macquarrie DJ, Clark JH, Lambert A, Mdoe JEG, Priest A, React. Funct. Polym., 35(3), 153 (1997) 
  9. Climent MJ, Corma A, Iborra S, Velty A, J. Mol. Catal. A-Chem., 182, 327 (2002) 
  10. Kim KS, Song JH, Kim JH, Seo G, Stud. Surf. Sci. Catal., 146, 505 (2003)
  11. Barcelo G, Grenouillat D, Senet JP, Sennyey G, Tetrahedron, 46, 1839 (1990) 
  12. Cauvel A, Renard G, Brunel D, J. Org. Chem., 62, 749 (1997) 
  13. Choudary BM, Kantam ML, Sreekanth P, Bandopadhyay T, Figueras F, Tuel A, J. Mol. Catal. A-Chem., 142(3), 361 (1999) 
  14. Rodriguez I, Iborra S, Rey F, Corma A, Appl. Catal. A: Gen., 194, 241 (2000) 
  15. Lindlar B, Luchinger M, Rothlisberger A, Haouas M, Pirngruber G, Kogelbauer A, Prins R, J. Mater. Chem., 12(3), 528 (2002) 
  16. Feng X, Fryxell GE, Wang LQ, Kim AY, Liu J, Kemner KM, Science, 276(5314), 923 (1997) 
  17. Yang C, Jia XP, Cao YD, He NY, Stud. Surf. Sci. Catal., 146, 485 (2003)
  18. Luechinger M, Prins R, Pirngruber GD, Microporous Mesoporous Mater., 85, 111 (2005) 
  19. Jaenicke S, Chuah GK, Lin XH, Hu XC, Microporous Mesoporous Mater., 35, 143 (2000)