화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.23, No.5, 800-805, September, 2006
High-pressure phase behavior of carbon dioxide in ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
E-mail:
.Phase equilibrium data of carbon dioxide in the ionic liquid 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf2N]) are presented at high pressures up to about 30MPa and at temperatures between 298.15 K and 343.15 K. The solubilities at a given temperature were determined by measuring the bubble point pressure of the ionic liquid solution with carbon dioxide dissolved using the high-pressure equilibrium apparatus equipped with a variable-volume view cell. Solubility results are reported for carbon dioxide concentrations ranging from 0.21 up to 0.80 mole fraction. Carbon dioxide gave very high solubilities in the ionic liquid at lower pressures, while the equilibrium pressure increased very steeply at higher concentrations of carbon dioxide. The solubility of carbon dioxide in the ionic liquid decreased with an increase in temperature.
  1. Anthony JL, Anderson JL, Maginn EJ, Brennecke JF, J. Phys. Chem. B, 109(13), 6366 (2005) 
  2. Blanchard LA, Brennecke JF, Ind. Eng. Chem. Res., 40(1), 287 (2001) 
  3. Blanchard LA, Gu ZY, Brennecke JF, J. Phys. Chem. B, 105(12), 2437 (2001) 
  4. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF, Nature, 399(6731), 28 (1999)
  5. Brennecke JF, Maginn EJ, AIChE J., 47(11), 2384 (2001) 
  6. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ, J. Am. Chem. Soc., 126(16), 5300 (2004) 
  7. Costantini M, Toussaint VA, Shariati A, Peters CJ, Kikic I, J. Chem. Eng. Data, 50, 52 (2005) 
  8. DeSimone JM, Science, 297, 799 (2002) 
  9. Dzyuba SV, Bartsch RA, Chem. Phys. Chem., 3, 161 (2002)
  10. de Azevedo RG, Esperanca JMSS, Szydlowski J, Visak ZP, Pires PF, Guedes HJR, Rebelo LPN, J. Chem. Thermodyn., 37(9), 888 (2005) 
  11. Holbrey JD, Seddon KP, Clean Prod. Proc., 1, 223 (1999)
  12. Kim K, Lang C, Moulton R, Kohl PA, J. Electrochem. Soc., 151(8), A1168 (2004) 
  13. Kroon M, Shariati A, Costantini M, van Spronsen J, Witkamp GJ, Sheldon RA, Peters C, J. Chem. Eng. Data, 50, 173 (2005) 
  14. Lee JM, Lee BC, Cho CH, Korean J. Chem. Eng., 17(5), 510 (2000)
  15. Lee JM, Lee BC, Lee SH, J. Chem. Eng. Data, 45, 851 (2000) 
  16. Marsh KN, Deev A, Wu ACT, Tran E, Klamt A, Korean J. Chem. Eng., 19(3), 357 (2002)
  17. Quinn BM, Ding ZF, Moulton R, Bard AJ, Langmuir, 18(5), 1734 (2002) 
  18. Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble R, J. Membr. Sci., 238(1-2), 57 (2004) 
  19. Scurto AM, Aki SNVK, Brennecke JF, J. Am. Chem. Soc., 124(35), 10276 (2002) 
  20. Seddon KR, J. Chem. Technol. Biotechnol., 68(4), 351 (1997) 
  21. Shariati A, Gutkowski K, Peters CJ, AIChE J., 51(5), 1532 (2005) 
  22. Shariati A, Peters CJ, J. Supercrit. Fluids, 25, 109 (2003) 
  23. Shariati A, Peters CJ, J. Supercrit. Fluids, 34, 171 (2005) 
  24. Sheldon R, Chem. Commun., 2399 (2001) 
  25. Visser AE, Holbrey JD, Rogers RD, Chem. Commun., 2484 (2001) 
  26. Wasserscheid P, Keim W, Angew. Chem.-Int. Edit., 39, 3772 (2000) 
  27. Welton T, Chem. Rev., 99(8), 2071 (1999) 
  28. Widegren JA, Laesecke A, Magee JW, Chem. Commun., 1610 (2005) 
  29. Widegren JA, Saurer EM, Marsh KN, Magee JW, J. Chem. Thermodyn., 37(6), 569 (2005) 
  30. Wu B, Reddy RG, Rogers RD, Solar Eng., 445 (2001)