화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.18, No.3, 133-141, September, 2006
Effect of elasticity of aqueous colloidal silica solution on chemical absorption of carbon dioxide with 2-amino-2-methyl-1-propanol
E-mail:
Carbon dioxide was absorbed into the aqueous nanometer sized colloidal silica solution of 0-31 wt% and 2-amino-2-methyl-1-propanol of 0-2 kmol/m3 in a flat-stirred vessel with the impeller of various sizes and speeds at 25 oC and 0.101 MPa to measure the absorption rate of CO2. The volumetric liquid-side mass transfer coefficient (kLa) of CO2 was used to obtain the empirical correlation formula containing the rheological behavior of the aqueous colloidal silica solution. Reduction of the measured kLa was explained by the viscoelastic properties of the aqueous colloidal silica solution. The theoretical value of the absorption rate of CO2 was estimated from the model based on the film theory accompanied by chemical reaction and compared with the measured value.
  1. Astarita G, Greco GL, Nicodemo LA, AIChE J., 15, 564 (1969) 
  2. Astarita G, Savage DW, Bisio A, Gas treatment with chemical solvents; John Wiley & Sons, New York (1983)
  3. Cussler EL, Diffusion; Cambridge University Press, New York, 118 (1984)
  4. Danckwerts PV, Sharma MM, Chem. Eng., 44, 244 (1966)
  5. Fan JM, Cui Z, Ind. Eng. Chem. Res., 44(17), 7010 (2005) 
  6. Hikita H, Asai S, Takatsuka T, Chem. Eng. J., 11, 131 (1976) 
  7. Hikita H, Ishimi K, Ueda K, Koroyasu S, Ind. Eng. Chem. Process Des. Dev., 24, 261 (1985) 
  8. Hozawa M, Inoue M, Sato J, Tsukada T, J. Chem. Eng. Jpn., 24, 209 (1991) 
  9. Kars RL, Best RJ, Chem. Eng. Sci., 17, 201 (1979)
  10. Keblinski P, Phillpot SR, Choi SUS, Eastman JA, Int. J. Heat Mass Transf., 45(4), 855 (2002) 
  11. Kennard ML, Meisen A, J. Chem. Eng. Data, 29, 309 (1984) 
  12. Kim JK, Jung JY, Kang YT, Int. J. Refrig., 29, 22 (2006) 
  13. Mehra A, Chem. Eng. Sci., 51, 461 (1995)
  14. Messaoudi B, Sada E, J. Chem. Eng. Jpn., 29(1), 193 (1996) 
  15. Metzner AB, Otter RE, AIChE J., 3, 3 (1957) 
  16. Moo-Young M, Kawase Y, Can. J. Chem. Eng., 65, 113 (1987)
  17. Nakanoh M, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 19, 190 (1980) 
  18. Nijsing RATO, Hendriksz RH, Kramers H, Chem. Eng. Sci., 10, 88 (1959) 
  19. Park SW, Sohn IJ, Park DW, Oh KJ, Sep. Sci. Technol., 38(6), 1361 (2003) 
  20. Park SW, Kim TY, Choi BS, Lee JW, Korea-Aust. Rheol. J., 16(1), 35 (2004)
  21. Park SW, Choi BS, Lee BD, Lee JW, Sep. Sci. Technol., 40(4), 911 (2005)
  22. Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 40(16), 3261 (2005) 
  23. Perez JF, Sandall OC, AIChE J., 20, 770 (1974) 
  24. Ranade VR, Ulbrecht JJ, AIChE J., 24, 796 (1978) 
  25. Sandall OC, Patel KG, Ind. Eng. Chem. Process Des. Dev., 9, 139 (1970) 
  26. Seyer FA, Metzner AB, AIChE J., 15, 426 (1969) 
  27. Totiwachwuthikul P, Meisen A, Lim CJ, J. Chem. Eng. Data, 36, 130 (1991) 
  28. Xu DM, Bai YF, Fu LZ, Guo JJ, Int. J. Heat Mass Transf., 48(11), 2219 (2005) 
  29. Yagi H, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 14, 488 (1975) 
  30. Zhou M, Cai WF, Xu CJ, Korean J. Chem. Eng., 20(2), 347 (2003)