화학공학소재연구정보센터
Chemical Engineering Science, Vol.53, No.16, 2933-2939, 1998
Analytical basis for separation enhanced reaction in continuous flow processes
Modified conversion and reaction extent parameters are used to investigate the effect of simultaneous reaction and adsorption in a well-mixed, steady-state, continuous flow reactor. The analytical method generates conditions in which reactant conversion, product yield or product selectivity exceed that of an equivalent adsorbent-free system. The conditions are shown to be functions of effective reaction Damkohler numbers and the adsorption parameters of the various reaction species. The method is specifically applied to the linear reaction schemes A reversible arrow B and A-->B --> C, and to the general scheme aA + bB + ... reversible arrow qQ + sS + .... The results provide a simple quantitative method for selecting favourable catalysts and adsorbents for such adsorptive reactors, and for choosing ideal contact times between the solid and fluid phases when mass transfer limitations are of importance. The analysis is also applied to systems involving solvent-based extraction for reaction enhancement. In this case, the effective reaction Damkohler numbers are shown to involve absorption parameters based on Henry's law (gas-liquid systems) or partition parameters (liquid-liquid systems).