Polymer(Korea), Vol.30, No.6, 545-549, November, 2006
폴리(비닐 알코올) 나노복합체 필름(ll):열적-기계적 성질 및 모폴로지
Poly(vinyl alcohol) Nanocomposite Films (II): Thermo-mechanical Properties and Morphology
E-mail:
초록
폴리(비닐 알코올)(PVA)과 폴리아크릴산-말레산-공중합체(PAM)의 블렌드를 수용액 상태로 얻은 후 점토인 사포나이트(SPT)를 분산시켜 필름 형태인 PVA/PAM/SPT의 나노복합재료를 합성하였다. 용액 삽입법을 이용하여 점토 함량을 0∼9 wt%의 다양한 농도로 변화시켜 얻은 나노복합재료에 대해 분산도, 모폴로지 및 열적-기계적 성질 등을 각각 조사하였다. 점토 함량이 3 wt%일 때 점토 입자는 PVA/PAM 블렌드에 잘 분산되었으며, 점토 함량이 7 wt%보다 많을 경우에는 고분자 모체에 일부 뭉친 구조가 관찰되었다. 나노복합재료의 열적 안정성은 점토 함량이 9 wt%로 증가할 때까지 꾸준히 증가하였다. 인장 강도와 초기인장 탄성률은 점토 함량이 7 wt%일 때 최고 값을 나타내었으나 그 이상의 점토 농도에서는 오히려 감소하였다. 본 연구 결과로부터 소량의 점토 첨가는 PVA/PAM 나노복합재료 필름의 열적, 기계적 성질을 증가시키는데 도움이 된다는 것을 알았다.
Blends of poly(acrylic acid-co-maleic acid)(PAM) with poly(vinyl alcohol)(PVA) were prepared in distilled water. PVA/PAM/saponite(PVA/PAM/SPT) nanocomposite films were prepared with various clay contents by using the solution intercalation method. The variations of the dispersion, morphology, and thermo-mechanical properties of the nanocomposites with clay content in the range 0 to 9 wt% were examined. Up to 3 wt% clay loading, the clay particles were homogeneously dispersed in the PVA/PAM blends. However, some agglomerated structures form in the polymer matrix above a clay content of 7 wt%. The thermal stability of the hybrids was increased linearly with increasing the clay loading up to 9 wt%. The maximum strength and modulus were obtained at a clay content of 7 wt%. Thus, the addition of small amounts of clay to the PVA/PAM blends produced PVA/PAM nanocomposites with improved the thermo-mechanical properties.
- Strawhecker KE, Manias E, Chem. Mater., 2, 2943 (2000)
- Cendoya I, Lopez D, Alegria A, Mijangos C, J. Polym. Sci. B: Polym. Phys., 39(17), 1968 (2001)
- Nakane K, Yamashita T, Iwakura K, Suzuki F, J. Appl. Polym. Sci., 74(1), 133 (1999)
- Suzuki F, Nakane K, Piao JS, J. Mater. Sci., 31(5), 1335 (1996)
- Legaly G, Smectitic Clays as Ionic Macromolecules, Elsevier, London (1986)
- LeBaron PC, Wang Z, Thomas JP, Appl. Clay Sci., 15, 11 (1999)
- Kojima Y, Usuki A, Kawasumi M, Okada A, J. Mater. Res., 8, 1185 (1993)
- Messersmith PB, Giannelis EP, Chem. Mater., 5, 1064 (1993)
- Yano K, Usuki A, Kurauchi T, Kamigaito O, J. Polym. Sci. A: Polym. Chem., 31, 2493 (1993)
- Chang JH, Jang TG, Ihn KJ, Lee WK, Sur GS, J. Appl. Polym. Sci., 90(12), 3208 (2003)
- Gilman JW, Appl. Clay Sci., 15, 31 (1999)
- Ogata N, Kawakage S, Ogihara T, J. Appl. Polym. Sci., 66(3), 573 (1997)
- Lagaly G, Appl. Clay Sci., 15, 1 (1999)
- Lagaly G, Developments in Ionic Polymers, Elsevier, London, Vol. 2, pp 77-140 (1986)
- Jaynes WF, Bigham JM, Clay Clay Min., 35, 440 (1987)
- Giannelis EP, Adv. Mater., 8, 29 (1996)
- Utracki LA, Clay-Containing Polymeric Nanocomposites, Rapra Technology Ltd., Shawbury, Vol. 1, Chap. 1 (2004)
- Sung YK, Song DK, Sung JS, Polym.(Korea), 30(1), 1 (2006)
- Hsiao SH, Liou GS, Chang LM, J. Appl. Polym. Sci., 80(11), 2067 (2001)
- Ke YC, Lu JK, Yi XS, Zhao J, Qi ZN, J. Appl. Polym. Sci., 78(4), 808 (2000)
- Chang JH, Kim SJ, Im S, Polymer, 45(15), 5171 (2004)
- Chang JH, Mun MK, Lee IC, J. Appl. Polym. Sci., 98(5), 2009 (2005)
- Vaia RA, Jandt KD, Kramer EJ, Giannelis EP, Chem. Mater., 8, 2628 (1996)
- Galgali G, Ramesh C, Lele A, Macromolecules, 34(4), 852 (2001)
- Morgan AB, Gilman JW, J. Appl. Polym. Sci., 87(8), 1329 (2003)
- Chang JH, Seo BS, Hwang DH, Polymer, 43(10), 2969 (2002)
- Frischer HR, Gielgens LH, Koster TP, Acta Polym., 50, 122 (1999)
- Agag T, Takeichi T, Polymer, 41(19), 7083 (2000)
- Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR, Polymer, 43(22), 5915 (2002)
- Nam SY, Sung KS, Chon SW, Rhim JW, Membrane J., 12, 255 (2002)
- Chang JH, Jo BW, J. Appl. Polym. Sci., 60(7), 939 (1996)
- Chawla KK, Composite Materials Science and Engineering, Springer-Verlag, NewYork (1987)
- Curtin WA, J. Am. Ceram. Soc., 74, 2837 (1991)