화학공학소재연구정보센터
Polymer(Korea), Vol.30, No.6, 545-549, November, 2006
폴리(비닐 알코올) 나노복합체 필름(ll):열적-기계적 성질 및 모폴로지
Poly(vinyl alcohol) Nanocomposite Films (II): Thermo-mechanical Properties and Morphology
E-mail:
초록
폴리(비닐 알코올)(PVA)과 폴리아크릴산-말레산-공중합체(PAM)의 블렌드를 수용액 상태로 얻은 후 점토인 사포나이트(SPT)를 분산시켜 필름 형태인 PVA/PAM/SPT의 나노복합재료를 합성하였다. 용액 삽입법을 이용하여 점토 함량을 0∼9 wt%의 다양한 농도로 변화시켜 얻은 나노복합재료에 대해 분산도, 모폴로지 및 열적-기계적 성질 등을 각각 조사하였다. 점토 함량이 3 wt%일 때 점토 입자는 PVA/PAM 블렌드에 잘 분산되었으며, 점토 함량이 7 wt%보다 많을 경우에는 고분자 모체에 일부 뭉친 구조가 관찰되었다. 나노복합재료의 열적 안정성은 점토 함량이 9 wt%로 증가할 때까지 꾸준히 증가하였다. 인장 강도와 초기인장 탄성률은 점토 함량이 7 wt%일 때 최고 값을 나타내었으나 그 이상의 점토 농도에서는 오히려 감소하였다. 본 연구 결과로부터 소량의 점토 첨가는 PVA/PAM 나노복합재료 필름의 열적, 기계적 성질을 증가시키는데 도움이 된다는 것을 알았다.
Blends of poly(acrylic acid-co-maleic acid)(PAM) with poly(vinyl alcohol)(PVA) were prepared in distilled water. PVA/PAM/saponite(PVA/PAM/SPT) nanocomposite films were prepared with various clay contents by using the solution intercalation method. The variations of the dispersion, morphology, and thermo-mechanical properties of the nanocomposites with clay content in the range 0 to 9 wt% were examined. Up to 3 wt% clay loading, the clay particles were homogeneously dispersed in the PVA/PAM blends. However, some agglomerated structures form in the polymer matrix above a clay content of 7 wt%. The thermal stability of the hybrids was increased linearly with increasing the clay loading up to 9 wt%. The maximum strength and modulus were obtained at a clay content of 7 wt%. Thus, the addition of small amounts of clay to the PVA/PAM blends produced PVA/PAM nanocomposites with improved the thermo-mechanical properties.
  1. Strawhecker KE, Manias E, Chem. Mater., 2, 2943 (2000)
  2. Cendoya I, Lopez D, Alegria A, Mijangos C, J. Polym. Sci. B: Polym. Phys., 39(17), 1968 (2001)
  3. Nakane K, Yamashita T, Iwakura K, Suzuki F, J. Appl. Polym. Sci., 74(1), 133 (1999)
  4. Suzuki F, Nakane K, Piao JS, J. Mater. Sci., 31(5), 1335 (1996)
  5. Legaly G, Smectitic Clays as Ionic Macromolecules, Elsevier, London (1986)
  6. LeBaron PC, Wang Z, Thomas JP, Appl. Clay Sci., 15, 11 (1999)
  7. Kojima Y, Usuki A, Kawasumi M, Okada A, J. Mater. Res., 8, 1185 (1993)
  8. Messersmith PB, Giannelis EP, Chem. Mater., 5, 1064 (1993)
  9. Yano K, Usuki A, Kurauchi T, Kamigaito O, J. Polym. Sci. A: Polym. Chem., 31, 2493 (1993)
  10. Chang JH, Jang TG, Ihn KJ, Lee WK, Sur GS, J. Appl. Polym. Sci., 90(12), 3208 (2003)
  11. Gilman JW, Appl. Clay Sci., 15, 31 (1999)
  12. Ogata N, Kawakage S, Ogihara T, J. Appl. Polym. Sci., 66(3), 573 (1997)
  13. Lagaly G, Appl. Clay Sci., 15, 1 (1999)
  14. Lagaly G, Developments in Ionic Polymers, Elsevier, London, Vol. 2, pp 77-140 (1986)
  15. Jaynes WF, Bigham JM, Clay Clay Min., 35, 440 (1987)
  16. Giannelis EP, Adv. Mater., 8, 29 (1996)
  17. Utracki LA, Clay-Containing Polymeric Nanocomposites, Rapra Technology Ltd., Shawbury, Vol. 1, Chap. 1 (2004)
  18. Sung YK, Song DK, Sung JS, Polym.(Korea), 30(1), 1 (2006)
  19. Hsiao SH, Liou GS, Chang LM, J. Appl. Polym. Sci., 80(11), 2067 (2001)
  20. Ke YC, Lu JK, Yi XS, Zhao J, Qi ZN, J. Appl. Polym. Sci., 78(4), 808 (2000)
  21. Chang JH, Kim SJ, Im S, Polymer, 45(15), 5171 (2004)
  22. Chang JH, Mun MK, Lee IC, J. Appl. Polym. Sci., 98(5), 2009 (2005)
  23. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP, Chem. Mater., 8, 2628 (1996)
  24. Galgali G, Ramesh C, Lele A, Macromolecules, 34(4), 852 (2001)
  25. Morgan AB, Gilman JW, J. Appl. Polym. Sci., 87(8), 1329 (2003)
  26. Chang JH, Seo BS, Hwang DH, Polymer, 43(10), 2969 (2002)
  27. Frischer HR, Gielgens LH, Koster TP, Acta Polym., 50, 122 (1999)
  28. Agag T, Takeichi T, Polymer, 41(19), 7083 (2000)
  29. Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR, Polymer, 43(22), 5915 (2002)
  30. Nam SY, Sung KS, Chon SW, Rhim JW, Membrane J., 12, 255 (2002)
  31. Chang JH, Jo BW, J. Appl. Polym. Sci., 60(7), 939 (1996)
  32. Chawla KK, Composite Materials Science and Engineering, Springer-Verlag, NewYork (1987)
  33. Curtin WA, J. Am. Ceram. Soc., 74, 2837 (1991)