화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.23, No.6, 997-1002, November, 2006
Simulation of protein adsorption in a batchwise affinity chromatography with a modified rate model
E-mail:
A rate model was adapted to simulate the dynamics of protein adsorption. This model takes axial dispersion and film mass transfer into account where there is a nonlinear adsorption isotherm for protein. The model equations were solved with the application of orthogonal collocation method on finite elements. The model is validated with experimental adsorption of urokinase in a batchwise column chromatographic process. Adsorption kinetics and isotherm were measured in a batchwise operation. With the assumption of back mixing at the column inlet, the effect of the different flow pattern on the concentration change inside the column can be simulated with the rate model.
  1. Aboudzadeh MR, Jiawen Z, Bin W, Korean J. Chem. Eng., 23(1), 124 (2006)
  2. Andrade JD, Principles of protein adsorption. Surface and interfacial aspect of biomedical polymers, Vol (2), protein adsorption, Plenum press, New York (1985)
  3. Anspach FB, Johnsoton A, Wirth HJ, Unger KK, Hearn MTW, J. Chromatogr., 499, 103 (1990) 
  4. Baker J, Finite element computational fluid mechanics, McGraw-hill, New York (1983)
  5. Cao XJ, Zhu JW, Wang DW, Dai GC, Wu XY, Chin. J. Chem. Eng., 5(1), 69 (1997)
  6. Chen TL, Hsu JT, AIChE J., 33, 1387 (1987)
  7. Chung SF, Wen CY, AIChE J., 14, 857 (1968)
  8. Dunnebier G, Engell S, Klatt KU, Schmidt-Traub H, Strube J, Weirich I, Comput. Chem. Eng., 22, S855 (1998)
  9. Guiochon G, Ghodbabe S, J. Phys. Chem., 92, 3682 (1988)
  10. Hritzko BJ, Xie Y, Wooley RJ, Wang NHL, AIChE J., 48(12), 2769 (2002)
  11. Kaczmarski K, Antons D, Sajonz H, Sajonz P, Guiochon G, J. Chromatogr., 925, 1 (2001) 
  12. Houwing J, Billiet HAH, van der Wielen LAM, AIChE J., 49(5), 1158 (2003)
  13. Lin S, Karger BL, J. Chromatogr., 499, 89 (1990) 
  14. Mazsaroff I, Cook S, Regnier FE, J. Chromatogr., 443, 119 (1988) 
  15. Petzold LR, DASSL: A differential/algebraic system solver, Lawrence Livermore National Laboratory Livermore, CA (1982)
  16. Seidel A, Gelbin D, Chem. Eng. Sci., 41, 541 (1986)
  17. Villadsen JV, Michelsen ML, Solution of differential equation model by polynomial approximation, Prentice-Hall, Englewood Cliffs, New Jersey (1978)
  18. Wei DC, Xiao YD, Shu B, Yan S, Biochem. Eng. J., 14, 45 (2003)
  19. Wilson EJ, Geankoplis CJ, Ind. Eng. Chem. Fundam., 5, 9 (1966)
  20. Whitley RD, Van Cott KE, Wang NHL, Ind. Eng. Chem. Res., 32, 149 (1993)
  21. Whitely RD, Wachter R, Liu F, Wang NHL, J. Chromatogr., 465, 137 (1989) 
  22. Yu Q, Wang NHL, Sep. Purif. Methods, 15, 127 (1986)