화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.12, No.6, 939-949, November, 2006
Microporous Poly(vinylidene fluoride-co-hexafluoropropylene) Polymer Electrolytes for Lithium/Sulfur Cells
E-mail:
Microporous polymer membranes of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) were prepared through the inclusion-followed-by-extraction method using the plasticizer/non-solvent dibutyl phthalate (DBP). The optimum content of DBP was found to be 400 wt% with respect to the polymer for achieving the highest ionic conductivity. Microporous polymer electrolytes (MPEs) were prepared by incorporating liquid electrolytes in the membrane. A maximum ionic conductivity of 1.5×10-3 (S/cm) was obtained at room temperature when using 1 M LiBF4 and 1 M LiPF6 solutions in TEGDME/EC (1 : 1). The MPEs were evaluated for the first discharge capacity in Li/S cells, which exhibited a single plateau at ca. 2.6V, with a maximum discharge capacity of 900 mAh/g for LiPF6 in TEGDME/EC electrolyte. The binary solvent TEGDME/EC was found to be more suitable than PC/EC for Li/S cells in terms of the first discharge capacity. The active material utilization of the sulfur cathode was found to be better for 40 wt% sulfur, relative to higher sulfur contents; we attribute this phenomenon to the effectiveness of the conductive carbon coating on sulfur present at this composition.
  1. Golodnitsky D, Livshits E, Ulus A, Peled E, Polym. Adv. Technol., 13, 683 (2002)
  2. Xi J, Qiu X, Zhu W, Tang X, Microporous Mesoporous Mater., 88, 1 (2006)
  3. Li X, Zhao Y, Cheng L, Yan M, Zheng X, Gao Z, Jiang Z, J. Solid State Electrochem., 9, 609 (2005) 
  4. Tarascon JM, Gozdz AS, Schmutz CN, Shokoohi F, Warren PC, Solid State Ion., 86, 183 (1996)
  5. Wang HP, Huang HT, Wunder SL, J. Electrochem. Soc., 147(8), 2853 (2000)
  6. Jeon JD, Cho BW, Kwak SY, J. Power Sources, 143(1-2), 219 (2005)
  7. He XM, Shi Q, Zhou X, Wan CR, Jiang CY, Electrochim. Acta, 51(6), 1069 (2005)
  8. Subramania A, Sundaram NTK, Kumar GV, J. Power Sources, 153(1), 177 (2006)
  9. Pu WH, He XM, Wang L, Jiang CY, Wan CR, J. Membr. Sci., 272(1-2), 11 (2006)
  10. Li ZH, Su GY, Wang XY, Gao DS, Solid State Ion., 176(23-24), 1903 (2005)
  11. Wu CG, Lu MI, Chuang HJ, Polymer, 46(16), 5929 (2005)
  12. Saunier J, Alloin F, Sanchez JY, Caillon G, J. Power Sources, 119, 454 (2003)
  13. Wang Z, Tang Z, Mater. Chem. Phys., 82, 16 (2003)
  14. Song JM, Kang HR, Kim SW, Lee WM, Kim HT, Electrochim. Acta, 48(10), 1339 (2003)
  15. Boudin F, Andrieu X, Jehoulet C, Olsen II, J. Power Sources, 81, 804 (1999)
  16. Marmorstein D, Yu TH, Striebel KA, McLarnon FR, Hou J, Cairns EJ, J. Power Sources, 89(2), 219 (2000)
  17. Wang J, Yang J, Wan C, Du K, Xie J, Xu N, Adv. Funct. Mater., 13, 487 (2003)
  18. Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E, J. Electrochem. Soc., 135, 1045 (1988)
  19. Shin JH, Kung SS, Kim KW, Ahn HJ, Ahn JH, J. Mater. Sci. -Mater. Med., 13, 727 (2002)
  20. Ryu HS, Ahn HJ, Kim KW, Ahn JH, Lee JY, Cairns EJ, J. Power Sources, 140(2), 365 (2005)
  21. Wang J, Wang YW, He XM, Ren JG, Jiang CY, Wan CR, J. Power Sources, 138(1-2), 271 (2004)
  22. Ryu HS, Choi JW, Ahn JH, Cho GB, Ahn HJ, Mater. Sci. Forum, 510, 50 (2006)
  23. Kim HJ, Lim TH, J. Ind. Eng. Chem., 10(7), 1081 (2004)
  24. Chiang CY, Shen YJ, Reddy AJ, Chu PP, J. Power Sources, 123(2), 222 (2003)
  25. Chang DR, Lee SH, Kim SW, Kim HT, J. Power Sources, 112(2), 452 (2002)
  26. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT, J. Electrochem. Soc., 150(6), A800 (2003)
  27. Shim J, Striebel KA, Cairns EJ, J. Electrochem. Soc., 149(10), A1321 (2002)
  28. Ryu HS, Ahn HJ, Kim KW, Ahn JH, Lee JY, J. Power Sources, 153(2), 360 (2006)
  29. Hemmingsen T, Electrochim. Acta, 37, 2775 (1992)
  30. Wang JL, Liu L, Ling ZJ, Yang J, Wan CR, Jiang CY, Electrochim. Acta, 48(13), 1861 (2003)