화학공학소재연구정보센터
Polymer, Vol.47, No.10, 3591-3598, 2006
Microstructural studies on BaCl2 doped poly(vinyl alcohol)
We have studied the effect of BaCl2 dopant on the optical and microstructural properties of a polymer poly(vinyl alcohol) (PVA). Pure and BaCl2 doped PVA films were prepared using solvent casting method. These films were characterized using FTIR, UV-visible, XRD and DSC techniques. The observed peaks around 3425 cm(-1), at 1733 cm(-1) and 1640 cm(-1) in the FTIR spectra were assigned to O-H, C=C stretching and acetyle C=O group vibrations, respectively. In the doped PVA shift in these bands can be understood on the basis of intra/inter molecular hydrogen bonding with the adjacent OH group of PVA. The UV-visible spectra shows the absorption bands around 196 nm and shoulders around 208 nm with different absorption intensities for doped PVA, which are assigned to n -> pi* transition. This indicates the presence of unsaturated bonds mainly in the tail-head of the polymer. Optical band energy gap is estimated using UV-visible spectra and it decreases with increasing dopant concentration. The powder XRD shows an increase in crystallinity in the doped PVA, which arises due to the interaction of dopant with PVA causing a molecular rearrangement within the amorphous phase of polymer. These modifications also influence the optical property of the doped polymer. The DSC study also supports increasing crystalline thickness and degree of crystallinity due to doping. (c) 2006 Elsevier Ltd. All rights reserved.