화학공학소재연구정보센터
Chemical Engineering Communications, Vol.193, No.8, 1038-1063, 2006
Simulation of bubble breakup dynamics in homogeneous turbulence
This article presents numerical simulation results for the deformation and breakup of bubbles in homogeneous turbulence under zero gravity conditions. The lattice Boltzmann method was used in the simulations. Homogeneous turbulence was generated by a random stirring force that acted on the fluid in a three-dimensional periodic box. The grid size was sufficiently small that the smallest scales of motion could be simulated for the underlying bubble-free flow. The minimum Weber number for bubble breakup was found to be about 3. Bubble breakup was stochastic, and the average time needed for breakup was much larger for small Weber numbers than for larger Weber numbers. For small Weber numbers, breakup was preceded by a long period of oscillatory behavior during which the largest linear dimension of the bubble gradually increased. For all Weber numbers, breakup was preceded by a sudden increase in the largest linear dimension of the bubble. When the Weber number exceeded the minimum value, the average surface area increased by as much as 80%.