Energy Conversion and Management, Vol.47, No.13-14, 1770-1778, 2006
Forecasting of electricity prices with neural networks
During recent years, the electricity energy market deregulation has led to a new free competition situation in Europe and other countries worldwide. Generators, distributors and qualified clients have some uncertainties about the future evolution of electricity markets. In consequence, feasibility studies of new generation plants, design of new systems and energy management optimization are frequently postponed. The ability of forecasting energy prices, for instance the electricity prices, would be highly appreciated in order to improve the profitability of utility investments. The development of new simulation techniques, such as Artificial Intelligence (AI), has provided a good tool to forecast time series. In this paper, it is demonstrated that the Neural Network (NN) approach can be used to forecast short term hourly electricity pool prices (for the next day and two or three days after). The NN architecture and design for prices forecasting are described in this paper. The results are tested with extensive data sets, and good agreement is found between actual data and NN results. This methodology could help to improve power plant generation capacity management and, certainly, more profitable operation in daily energy pools. (c) 2005 Elsevier Ltd. All rights reserved.