화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.110, No.18, 6067-6072, 2006
New experimental data and mechanistic studies on the bromate-dual substrate-dual catalyst batch oscillator
The bromate-hypophosphite-acetone-Mn(II)-Ru(bpy)(3)(2+) batch oscillator was recently suggested for studying two-dimensional pattern formation. The system meets all major requirements that are needed for generation of good quality traveling waves in a thin solution layer. The serious drawback of using the system for studying temporal and spatial dynamical phenomena is its unknown chemical mechanism. In order to develop a mechanism that explains the observed long-lasting batch oscillations the bromate-hypophosphite-acetone-Mn(II)-Ru(bpy)(3)(2+) oscillator was revisited. We studied the dynamics both in the total system and in some composite reactions, and kinetic measurements were carried out in three subsystems. From the new experimental results we concluded that the two oscillatory sequences observed in the full system are originated from two oscillatory subsystems, the Mn(II)-catalyzed bromate-hypophosphite-acetone and the Ru(bpy)(3)(2+)-catalyzed bromate-bromoacetone reactions. Here we propose a mechanism which is capable of simulating the dynamical features that appeared in the complex system.