Journal of Physical Chemistry B, Vol.110, No.15, 7750-7756, 2006
Fabrication of copper hydroxyphosphate with complex architectures
Copper hydroxyphosphate [Cu-2(OH)PO4] with complex architectures has been synthesized through a simple and mild hydrothermal route in the absence of any external inorganic additives or organic structure-directing templates. Powder X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectrometry are used to characterize various properties of the obtained samples. Single-crystals, twinned-crystals, and various novel architectures of copper hydroxyphosphate can be constructed through a careful control of synthetic parameters, such as the molar ratio of initial reagents, reagent concentration, reaction time, and temperature. On the basis of structure and chemical bond analysis, copper hydroxyphosphate crystals tend to grow along the c-axis and have a rotation twinned-crystal growth habit, which is essential for the formation of various complex architectures. The current approach provides a facile strategy to synthesize copper hydroxyphosphate crystals with unique morphologies and complex architectures, which may be applicable to the synthesis of other inorganic materials.