화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.22, 10919-10925, 2006
Development of a fitting model suitable for the isothermal titration calorimetric curve of DNA with cationic ligands
A novel curve fitting model was developed for the isothermal titration calorimetry (ITC) of a cationic ligand binding to DNA. The ligand binding often generates a DNA conformational change from an elongated random coil into a compact collapsed form that is referred to as "DNA condensation". The ligand binding can be classified into two regimes having different binding constants K-i, i.e., the binding to an elongated DNA chain with a binding constant K-1 and with K-2 that occurred during the conformational transition. The two-variable curve fitting models are usually bound by a strict regulation on the difference in the values of the binding constants K-1 > K-2. For the DNA condensation, however, the relationships for K-1 and K-2 are still unclear. The novel curve fitting model developed in this study takes into account this uncertainty on the relationship of the binding constants and is highly flexible for the two-variable binding constant system.