화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.128, No.21, 7025-7035, 2006
Convergent, enantioselective syntheses of guanacastepenes A and E featuring a selective cyclobutane fragmentation
The evolution of a convergent strategy that led to efficient, enantioselective syntheses of both natural (+)- and unnatural (-)-guanacastepene E and formal total syntheses of (+)- and (-)-guanacastepene A is described. A union of five- and six-membered ring intermediates by an efficient pi-allyl Stille cross-coupling reaction was followed by an intramolecular enone-olefin [2+2] photocycloaddition and a stereoelectronically controlled, reductive fragmentation of the resulting cyclobutyl ketone. The latter two transformations enabled controlled formation of the C-11 quaternary stereocenter and the central seven-membered ring of the guanacastepenes. An enantiospecific synthesis of the functionalized five-membered ring vinyl stannane from the monoterpene R-(-)-carvone featuring a carbon-carbon bond forming ring contraction was also developed.