Langmuir, Vol.22, No.9, 4438-4444, 2006
Ferrocenylalkylthiolates as a probe of heterogeneity in binary self-assembled monolayers on gold
The oft-cited complexity of tethered ferrocene electrochemistry in single component (FcRS(-)) or binary (FIRS-/CH3R'S-) self-assembled monolayers (SAMS) on gold has been investigated. The complex voltammetry is shown to be linked to local electrostatics caused by the formation of the ferrocenium ion. This conclusion is reached by Studying model effects in binary SAMs, where a cationic alkylthiolate ((H3NC11S)-C-divided by-Au) is mixed with FcC(12)S-Au. A fitting procedure involving both a Gaussian and a Lorentzian distribution is used for deconvolution of the two peaks which are consistently observed in the SAMS when chi(surf)(Fe) >= 0.2. The lower-potential (E degrees' = 250 mV) and higher-potential (E degrees' = 350 mV) voltammetric peaks are assigned to Fc moieties in "isolated" and "clustered" states, respectively. Use of this method to better understand SAM structure is demonstrated by distinguishing the degree of homogeneity in two binary SAMs of similar composition.