화학공학소재연구정보센터
Applied Catalysis A: General, Vol.308, 182-193, 2006
Reforming reactions of acetic acid on nickel catalysts over a wide temperature range
Catalytic steam reforming of bio-oil, a liquid derived from pyrolysis of biomass, may be a viable process of renewable hydrogen production. Acetic acid is one of the major constituents of bio-oil, and for this reason, it is used as a model compound to study its reaction network under steam reforming conditions over Al2O3 and La2O3, and Ni catalyst supported on La2O3/Al2O3 carrier, employing transient and steady-state techniques. It is found that acetic acid interacts strongly with the Al2O3 carrier and less strongly with La2O3. Decomposition reactions as well as the ketonization reaction take place, especially at intermediate temperatures. In the presence of Ni, catalytic activity is shifted toward lower temperatures. Nickel promotes steam reforming reactions and retards the rate of carbon deposition onto the catalyst surface. It is also found that carbon formation is affected by reaction temperature, the HAc/H2O ratio and catalyst composition. Carbon deposition is favoured at low reaction temperatures and at high HAc/H2O ratio. (c) 2006 Elsevier B.V. All rights reserved.