화학공학소재연구정보센터
Chinese Journal of Chemical Engineering, Vol.14, No.3, 321-329, 2006
Large eddy simulation of liquid flow in a stirred tank with improved inner-outer iterative algorithm
In this study, the large eddy simulation technique was applied on the flow in a baffled stirred tank driven by a Rushton turbine at Re=29000. The interaction between the rotating impeller and the static baffles was accounted for by means of the improved inner-outer iterative algorithm. The sub-grid scale model was a conventional Smagorinsky model. The numerical solution of the governing equations was conducted in a cylindrical staggered grid. The momentum and the continuity equations were discretized using the finite difference method, with a third-order QUICK scheme used for convective terms. The phase-resolved predictions were compared with the experimental data of Wu and Patterson and good agreement was observed for both the mean and the turbulence quantities. They were much better than the Reynolds-averaged Navier-Stokes model including the Reynolds Stress Model for simulating the turbulence. The study also suggests the feasibility of LES in combination with the improved inner-outer iterative algorithm for the simulation of turbulent flow in stirred tanks.