Journal of Colloid and Interface Science, Vol.299, No.2, 916-923, 2006
Iso-branched semifluorinated alkanes in Langmuir monolayers
A series of semifluorinated n-alkanes (SFAs), of the general formula: (CF3)(2)-CF-(CF2)(6)-(CH2)(n)H (in short iF9Hn), n = 11-20 have been synthesized and employed for Langmuir monolayer characterization. Surface pressure and electric surface potential measurements were performed in addition to Brewster angle microscopy results, which enabled both direct visualization of the monolayers structure and estimation of the monolayer thickness at different stages of compression. Our paper was aimed at investigating the influence of the iso-branching of the perfluorinated fragment of the SFA molecule on the surface behavior of these molecules at the air/water interface. It occurred that iF9 SFAs with the number of carbon atoms in the hydrogenated moiety from 11 to 20 are capable of Langmuir monolayer formation. Monolayers from iF9H11 to iF9H13 are instable, whereas those formed by iF9 SFAs with longer hydrogenated chains form stable films at the free surface of water. As compared to SFAs containing perfluorinated chain in a normal arrangement, iso-branched molecules have a greater tendency to aggregate. Lower stability of monolayers formed by iF9 SFAs as compared to F10 SFAs originated from the surface nucleation observed in BAM images, even at the very initial stages of compression. The dipole moment vector for iso-branched SFAs was found to be virtually aligned with the main axis of the molecule, contrary to F10 SFAs, where the dipole moment vector was calculated to be tilted with respect to the main molecular axis. Quantitative Brewster angle microscopy measurements (relative reflectivity experiments) enabled us to monitor the changes of monolayer thickness at different stages of monolayer compression. (c) 2006 Elsevier Inc. All rights reserved.
Keywords:Langmuir monolayers;air/water interface;semifluorinated alkanes;iso-branching;surface potentials;effective dipole moments;Brewster angle;microscopy