Journal of Colloid and Interface Science, Vol.300, No.1, 149-154, 2006
One-dimensional assemblies of platinum nanoparticles on a graphite surface using nonionic/ionized mixed hemicylindrical micelle templates
One-dimensional (1-D) self-assemblies of Pt nanoparticles on a graphite surface have been synthesized via a template-directed sintering process of individual nanoparticles, using nonionic/cationic mixed hemicylindrical micelle templates of dodecyldimethylamine oxide surfactant at graphite/solution interfaces. The dimension and morphology of Pt nanoparticles can be widely controlled by the concentration of Pt ions equivalent to the mixing ratio of nonionic and cationic species in the surfactant micelle. This approach could be extended to fabricate a wide range of self-assembling metallic nanostructures on surfaces using various nonionic/cationic mixed micelle-like self-assemblies carrying metal ions at interfaces, while providing a fundamental insight into a 1-D self-assembly from individual nanoparticles. (c) 2006 Elsevier Inc. All rights reserved.