Journal of Colloid and Interface Science, Vol.300, No.1, 176-182, 2006
Core-shell structured SiO2@YVO4 : Dy3+/Sm3+ phosphor particles: Sol-gel preparation and characterization
Spherical SiO2 particles have been coated with YVO4:Dy3+/Sm3+ phosphor layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO2@YVO4:Dy3+/Sm3+ particles. X-ray diffraction (XRD), Fourier-transform IR spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO2 @YVO4:Dy3+/Sm3+ core-shell phosphors. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 300 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (20 nm for one deposition cycle). The core-shell particles show strong characteristic emission from Dy3+ for SiO2@YVO4:Dy3+ and from Sm3+ for SiO2@YVO4:Sm3+ due to an efficient energy transfer from YVO4 host to them. The PL intensity of Dy3+ and Sm3+ increases with raising the annealing temperature and the number of coating cycles. (c) 2006 Elsevier Inc. All rights reserved.