화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.110, No.27, 8477-8487, 2006
Energy transfer between polyatomic molecules. 3. Energy transfer quantities and probability density functions in self-collisions of benzene, toluene, p-xylene and azulene
This paper is the third and last in a series of papers that deal with collisional energy transfer, CET, between aromatic polyatomic molecules. Paper 1 of this series (J. Phys. Chem. B 2005, 109, 8310) reports on the mechanism and quantities of CET between an excited benzene and cold benzene and Ar bath. Paper 2 in the series (J. Phys. Chem., in press) discusses CET between excited toluene, p-xylene and azulene with cold benzene and Ar and CET between excited benzene colliding with cold toluene, p- xylene and azulene. The present work reports on CET in self-collisions of benzene, toluene, p-xylene and azulene. Two modes of excitation are considered, identical excitation energies and identical vibrational temperatures for all four molecules. It compares the present results with those of papers 1 and 2 and reports new findings on average vibrational, rotational, and translational energy, , transferred in a single collision. CET takes place mainly via vibration to vibration energy transfer. The effect of internal rotors on CET is discussed and CET quantities are reported as a function of temperature and excitation energy. It is found that the temperature dependence of CET quantities is unexpected, resembling a parabolic function. The density of vibrational states is reported and its effect on CET is discussed. Energy transfer probability density functions, P(E, E'), for various collision pairs are reported and it is shown that the shape of the curves is convex at low temperatures and can be concave at high temperatures. There is a large supercollision tail at the down wing of P(E, E'). The mechanisms of CET are short, impulsive collisions and long-lived chattering collisions where energy is transferred in a sequence of short internal encounters during the lifetime of the collision complex. The collision complex lifetimes as a function of temperature are reported. It is shown that dynamical effects control CET. A comparison is made with experimental results and it is shown that good agreement is obtained.