Langmuir, Vol.22, No.13, 5588-5596, 2006
Spontaneous formation of vesicles and dispersed cubic and hexagonal particles in amino acid-based catanionic surfactant systems
Mixed catanionic surfactant systems based on amino acids were investigated with respect to the formation of liquid crystal dispersions and the stability of the dispersions. The surfactants used were arginine-N-lauroyl amide dihydrochloride ( ALA) and NR-lauroyl-arginine-methyl ester hydrochloride ( LAM), which are arginine-based cationic surfactants; sodium hydrogenated tallow glutamate ( HS), a glutamic-based anionic surfactant; and the anionic surfactants sodium octyl sulfate ( SOS) and sodium cetyl sulfate ( SCS). It is demonstrated that in certain ranges of composition there is a spontaneous formation of vesicular, cubic, and hexagonal structures. The solutions were characterized with respect to internal structure and size by cryogenic transmission electron microscopy ( cryo-TEM), dynamic light scattering ( DLS), and turbidity measurements. Vesicles formed spontaneously and were found for all systems studied; their size distribution is presented for the systems ALA/SCS/W and ALA/SOS/W; they are all markedly polydisperse. The aging process for the system ALA/SOS/W was monitored both by turbidity and by cryo-TEM imaging; the size distribution profile for the system becomes narrower and the number average radius decreases with time. The presence of dispersed particles with internal cubic structure ( cubosomes) and internal hexagonal structure ( hexosomes) was documented for the systems containing ALA and HS. The particles formed spontaneously and remained stably dispersed in solution; no stabilizer was required. ( Cubosome and hexosome are USPTO registered trademarks of Camurus AB, Sweden.) The spontaneous formation of particles and their stability, together with favorable biological responses, suggests a number of applications.