화학공학소재연구정보센터
Langmuir, Vol.22, No.13, 5804-5809, 2006
Biofunctional ZnO nanorod arrays grown on flexible substrates
A square pattern of thioctic acid self-assembled ZnO nanorod arrays was grown on a large 4-in. thermoplastic polyurethane (TPU) flexible substrate via an in situ soluthermal process at low temperature (348 K). With the addition of dimercaptosuccinic acid (DMSA), the surface chemistry forms a disordered ZnO phase, and the morphology of the ZnO-DMSA nanorods changes with various DMSA addition times. As evidenced by the Zn-2p3/2, C-1s, O-1s, S-2p, and N-1 s scans of X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), DMSA and proteins were conjugated on the single crystalline ZnO nanorods. The photoluminescence (PL) spectra indicated that the optical properties of ZnO nanorod arrays were changed while the DMSA was inserted, and proteins were conjugated. Furthermore, a control test found that the ZnO nanorods show a significant improvement in sensitive characterization over the ZnO film. As another proteins (e. g., human serum albumin, HSA) were bound onto the ZnO- bovine serum albumin (BSA) nanorod arrays, an enhanced ultraviolet emission intensity was detected. On the basis of these results, one might be expected to conjugate specific biomolecules on the biofunctional ZnO nanorod arrays to detect the complementary biomolecules by PL detecting.