화학공학소재연구정보센터
Langmuir, Vol.22, No.14, 6341-6345, 2006
Highly luminescent, stable, and water-soluble CdSe/CdS core - Shell dendron nanocrystals with carboxylate anchoring groups
A dendron ligand with two carboxylate anchoring groups at its focal point and eight hydroxyl groups as its terminal groups was found to efficiently convert as-synthesized CdSe/CdS core-shell nanocrystals in toluene to water-soluble dendron-ligand stabilized nanocrystals (dendron nanocrystals). The resulting dendron nanocrystals retained 60% of the photoluminescence value of the original CdSe/CdS core-shell nanocrystals in toluene and were significantly brighter than the similar dendron nanocrystals with thiolate (deprotonated thiol group) as the anchoring group which retained just 10% of the photoluminescence value of the original CdSe/CdS core-shell nanocrystals in toluene. The carboxylate-based dendron nanocrystals survived UV irradiation in air for at least 13 days, about 9 times better than the thiolate-based dendron nanocrystals (35 h) and similar to that of the thiolate-based dendron-box stabilized CdSe/CdS core-shell nanocrystals (box nanocrystals). Upon UV irradiation, the dendron nanocrystals became even 2 times brighter than the original CdSe/CdS core-shell nanocrystals in toluene, and the UV-brightened PL can retain the brightness for at least several months. These stable and bright dendron nanocrystals were soluble in various aqueous media, including all common biological buffer solutions tested, for at least 1.5 years. In addition to their superior performance, the synthetic chemistry of carboxylate dendron ligands and the corresponding dendron nanocrystals is relatively simple and with high yield.