화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.110, No.30, 9500-9504, 2006
Combined Raman spectroscopic and theoretical investigation of fundamental vibrational bands of furfuryl alcohol (2-furanmethanol)
Furfuryl alcohol (FA) is a promising reactive precursor for new materials. FA reaction mechanisms, that is, self-reactions or cross reactions with other substances, can be studied by vibrational spectroscopy. We present a necessary prerequisite for such studies by a Raman spectroscopic and theoretical study of FA in weakly interacting environments. It is the first study of FA vibrational properties based on density functional theory (DFT/B3LYP), and a recently proposed hybrid approach to the calculation of fundamental frequencies, which also includes an anharmonic contribution. FA occupies five different conformational states, each with more than 5% probability, and two of these dominate at T = 298 K. Excluding one frequency, the remaining ones are predicted as a weighted average over the two dominant conformers to a best RMS error of 8 cm(-1) and are qualitatively assigned. The excluded CH stretching mode is underestimated by 65 cm(-1). This may be due to a combination of an insufficient level of theory and the neglect of Fermi interactions for properly describing this type of mode.