화학공학소재연구정보센터
Langmuir, Vol.22, No.16, 6764-6770, 2006
Effects of SDS on the thermo- and pH-sensitive structural changes of the poly(acrylic acid)-based copolymer containing both poly(N-isopropylacrylamide) and monomethoxy poly(ethylene glycol) grafts in water
The effects of SDS on the structural changes of the thermally induced polymeric micelles from a graft copolymer comprising poly(acrylic acid) (PAAc) as the backbone and poly(N-isopropylacrylamide) (PNIPAAm) and monomethoxy poly(ethylene glycol) (mPEG) as the grafts in aqueous solution are studied. At low temperature, SDS micelles form via the hydrophobic association of SDS molecules with the PNIPAAm grafts at a critical aggregation concentration of SDS (cacSDS) much lower than its critical micelle concentration. Consequently, the critical aggregation temperature of the graft copolymer is elevated. The corresponding structure of the thermally induced polymeric micelles is characterized by an abrupt reduction in the particle size and an increased tendency toward formation of the monocore structure with a more compact and hydrophobic PNIPAAm microdomain being developed. On the other hand, upon the polymeric micelle formation at high temperature, the copolymer-bound SDS micelle structure is disrupted and the dissociated SDS molecules migrate to the core-shell interface with their alkyl chains residing in the liquidlike region of the hydrophobic PNIPAAm microdomain. The correlation between the polymeric particles and copolymer-bound micelles is further substantiated by showing the change of the colloidal particle size in response to changes in cacSDS via adjusting the pH of the aqueous copolymer/SDS solutions.