화학공학소재연구정보센터
Catalysis Letters, Vol.110, No.1-2, 161-167, 2006
Effect of the support on the mechanism of partial oxidation of methane on platinum catalysts
The partial oxidation of methane was studio on Pt/Al2O3, Pt/ZrO2, Pt/CeO2 and Pt/Y2O3 catalysts. For Pt/Al2O3, Pt/ZrO2 and Pt/CeO2, temperature programmed surface reaction (TPSR) studies showed partial oxidation of methane comprehends two steps: combustion of methane followed by CO2 and steam reforming of unreacted methane, while for Pt/Y2O3 a direct mechanism was observed. Oxygen Storage Capacity (OSC) evaluated the reducibility and oxygen transfer capacity of the catalysts. Pt/CeO2 catalyst showed the highest stability on partial oxidation. The results were explained by the higher reducibility and oxygen storage/release capacity which allowed a continuous removal of carbonaceous deposits from the active sites, favoring the stability of the catalyst. For Pt/Al2O3 and Pt/ZrO2 catalysts the increase of carbon deposits around or near the metal particle inhibits the CO2 dissociation on CO2 reforming of methane. Pt/Y2O3 was active and stable for partial oxidation of methane and its behaviour was explained by a change in the reaction mechanism.