Journal of Applied Polymer Science, Vol.101, No.6, 4504-4516, 2006
High PVC film-forming composite latex particles via miniemulsification, part 1: Preparation
Miniemulsification technology was used to encapsulate TiO2 particles inside a styrene/n-butyl acrylate copolymer with high loading levels (11 to 70% PVC (pigment volume concentration)). In this approach, a St/BA copolymer dissolved in toluene in the presence of a costabilizer (hexadecane) was mixed with a dispersion of TiO2 particles in toluene and sonified, and then emulsified in an aqueous surfactant solution by sonification. The effect of sonification time on both the dispersibility of the TiO2 particles in the presence of the copolymer and hexadecane and on the encapsulated particle size was investigated. Particle size analysis by dynamic light scattering showed that these composite latexes are quite stable. It was also found that as the TiO2 loading increased from 11 to 43% PVC, the particle size of the TiO2 dispersion decreased while the polymerencapsulated TiO2 particle size increased. The effect of surfactant concentration (sodium lauryl sulfate, SLS) on the encapsulated particle size was investigated using four different SLS concentrations in the 11% PVC system. The results showed that as the SLS concentration increased the particle size decreased, as expected. Also it was found that the minimum surfactant concentration that gives stable encapsulated TiO2 particles is above 10 mM SLS. The role of HD in the recipe was studied for an artificial latex containing no TiO2 and one prepared at 11% PVC, in terms of particle size before and after solvent stripping, and its effect on the T-g. (c) 2006 Wiley Periodicals, Inc.