Journal of Physical Chemistry B, Vol.110, No.31, 15063-15074, 2006
Open-system nonequilibrium steady state: Statistical thermodynamics, fluctuations, and chemical oscillations
Gibbsian equilibrium statistical thermodynamics is the theoretical foundation for isothermal, closed chemical, and biochemical reaction systems. This theory, however, is not applicable to most biochemical reactions in living cells, which exhibit a range of interesting phenomena such as free energy transduction, temporal and spatial complexity, and kinetic proofreading. In this article, a nonequilibrium statistical thermodynamic theory based on stochastic kinetics is introduced, mainly through a series of examples: single-molecule enzyme kinetics, nonlinear chemical oscillation, molecular motor, biochemical switch, and specificity amplification. The case studies illustrate an emerging theory for the isothermal nonequilibrium steady state of open systems.