Journal of Physical Chemistry B, Vol.110, No.31, 15589-15596, 2006
Role of sequence and conformation on the photochemistry and the photophysics of A-T DNA dimers: An experimental and computational approach
The role of base sequence and conformation on the photochemistry and photophysics of thymidylyl (3'-5 )-2'-deoxyadenosine sodium salt (TpdA) and 2-deoxyadenylyl (3'-5')-thymidine ammonium salt (dApT) was studied. To this end, nanosecond transient absorption at 266 nm, steady-state irradiation at 254 nm, and quantum chemical calculations were used. The transient absorption spectra show the solvated electron broad band in the visible region for each dinucleotide. In addition, low-intensity absorption bands are observed in the UV region, which are attributed to the deprotonated and protonated neutral radicals of adenine and thymine bases. Photoionization (PI) occurs by one- and two-photon pathways; the latter accounting for similar to 70% of the net PI yield. A diffusion-limited rate constant of 2.0 x 10(10) M-1 s(-1) was obtained for the reaction of the neutral molecule with the photoejected electron in both sequences. The photodestruction yield, measured from the chromophore loss at 260 nm, decreases in the presence of well-known electron scavengers. This suggests the participation of base radical anions as one of the photodegradation pathways, which is higher in TpdA than in dApT. The intermediacy of a radical ion pair (charge separated state) between the adjacent adenine and thymine bases is proposed in the formation of the [2 + 2] cycloadduct intermediate. The [2 + 2] cycloadduct intermediate is known to be the precursor of the thymine-adenine eight-member ring photoproduct (TA*). Conformational constrains in the radical ion pair are suggested to explain the absence of the TA* photoproduct in dApT. This hypothesis is supported by semiempirical calculations performed on all relevant reactive intermediates proposed to participate in the mechanism of formation of TA*. Altogether, the results show that sequence and conformation profoundly influence the photochemistry and the photophysics of these DNA model systems.