Journal of Bioscience and Bioengineering, Vol.101, No.6, 501-507, 2006
Characterization of two 3-hydroxybutyrate dehydrogenases in poly(3-hydroxybutyrate)-degradable bacterium, Ralstonia pickettii T1
Two D-(-)-3-hydroxybutyrate (3HB) dehydrogenases, BDH1 and BDH2, were isolated and purified from a poly(3-hydroxybutyrate) (PHB)-degradable bacterium, Ralstonia pickettii T1. BDH1 activity increased in R. pickettii T1 cells grown on several organic acids as a carbon source but not on 3HB, whereas BDH2 activity markedly increased in the same cells grown on 3HB or PHB. To examine their biochemical properties, bdh1 and bdh2 were cloned and overexpressed in Escherichia coli, and their purified products were characterized. The kinetic parameters indicate that BDH1 is more suitable for converting acetoacetate to 3HB than BDH2, whereas BDH2 is more efficient for the reverse reaction than BDH1. Thus, R. pickettii T1 contains two BDHs with different biochemical properties and physiological roles: BDH1 for cell growth on organic acids other than 3HB and BDH2 for cell growth on 3HB or PHB.