Inorganic Chemistry, Vol.45, No.20, 8026-8035, 2006
Coordination modes in the formation of the ternary Am(III), Cm(III), and Eu(III) complexes with EDTA and NTA: TRLFS, C-13 NMR, EXAFS, and thermodynamics of the complexation
The formation and the structure of the ternary complexes of trivalent Am, Cm, and Eu with mixtures of EDTA+NTA (ethylenediamine tetraacetate and nitrilotriacetate) have been studied by time-resolved laser fluorescence spectroscopy, C-13 NMR, extended X-ray absorption fine structure, and two-phase metal ion equilibrium distribution at 6.60 m (NaClO4) and a hydrogen ion concentration value (pcH) between 3.60 and 11.50. In the ternary complexes, EDTA binds via four carboxylates and two nitrogens, while the binding of the NTA varies with the hydrogen ion concentration, pcH, and the concentration ratios of the metal ion and the ligand. When the concentration ratios of the metal to ligand is low (1:1:1-1:1:2), two ternary complexes, M(EDTA)(NTAH)(3-) and M(EDTA)(NTA)(4-), are formed at pcH ca. 9.00 in which NTA binds via three carboxylates, via two carboxylates and one nitrogen, or via two carboxylates and a H2O. At higher ratios (1:1:20 and 1:10:10) and pcH's of ca. 9.00 and 11.50, one ternary complex, M(EDTA)(NTA) 4-, is formed in which NTA binds via three carboxylates and not via nitrogen. The two-phase equilibrium distribution studies at tracer concentrations of Am, Cm, and Eu have also confirmed the formation of the ternary complex M(EDTA)(NTA)(4-) at temperatures between 0 and 60 degrees C. The stability constants (log beta(111)) for these metal ions increase with increasing temperature. The endothermic enthalpy and positive entropy indicated a significant effect of cation dehydration in the formation of the ternary complexes at high ionic strength.