화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.49, No.23-24, 4399-4406, 2006
Subcooled boiling incipience on a highly smooth microheater
Subcooled boiling incipience on a highly smooth microscale heater (270 mu m x 270 mu m) submerged in FC-72 liquid is investigated. Using high-speed imaging and a transient heat flux measurement technique, the mechanics of homogeneous nucleation on the heater are elucidated. Bubble incipience on the microheater was observed to be an explosive process. It is found that the superheat limit of boiling liquid is required for bubble incipience. It is concluded that boiling incipience on the microheater is a homogeneous liquid vapor phase change process. This is in contrast to recent observations of low-superheat heterogeneous nucleation on metallic surfaces of rms roughness ranging from 4 to 28 nm [T.G. Theofanous, J.P. Tu, A.T. Dinh, T.N. Dinh, The boiling crisis phenomenon part 1: nucleation and nucleate boiling heat transfer, Exp. Therm. Fluid Sci. 26 (2002) 775-792; Y. Qi, J.F. Klausner, Comparison of gas nucleation and pool boiling site densities, J. Heat Transfer 128 (2005) 13-20; Y. Qi, J.F. Klausner, Heterogeneous nucleation with artificial cavities, J. Heat Transfer 127 (2005) 1189-1196]. Following the explosive bubble incipience, the boiling process on the microheater can be maintained at much lower superheats. This is mainly due to the necking during bubble departure that leaves an embryo from which the next-generation bubbles grow. (c) 2006 Elsevier Ltd. All rights reserved.